Skip to main content

NMR Studies of a Timekeeping System

  • Chapter
Bacterial Circadian Programs
  • 649 Accesses

Abstract

Cyanobacterial circadian clocks represent perhaps the best studied timekeeping system in terms of the molecular and mechanistic information available; structural biology has contributed significantly in both respects. We present here an overview of progress made using traditional high-resolution nuclear magnetic resonance (NMR) spectroscopy on the structures of these proteins in solution. Combining NMR and a dissection approach yielded high-resolution structures of many clock protein fragments, especially from KaiA, SasA and CikA, and the sole complex available thus far describing the interaction of KaiA with KaiC at high resolution. These structures allowed hypotheses on the mechanism and function of these proteins; we attempt to revisit these here. The development of NMR methodology has created new tools to access increasingly large and dynamic systems. We argue that these new approaches can be used in the study of circadian oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barford D, Hu S-H, Johnson LN (1991) Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J Mol Biol 218:233–260

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141

    Article  PubMed  CAS  Google Scholar 

  • Bourret RB, Hess JF, Simon MI (1990) Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc Natl Acad Sci USA 87:41–45

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Rance M, Skelton NJ (2007) Protein NMR spectroscopy principles and practice. Elsevier Academic, New York

    Google Scholar 

  • Doublié S, Tabor S, Long AM, Richardson CC, Ellenberger T (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Ã… resolution. Nature 391:251–258

    Article  PubMed  Google Scholar 

  • Dunlap JC, Loros JJ, DeCoursey PJ (2004). Chronobiology: biological timekeeping. Sinauer, Sunderland, Mass

    Google Scholar 

  • Dutta R, Qin L, Inouye M (1999) Histidine kinases: diversity of domain organization. Mol Microbiol 34:633–640

    Article  PubMed  CAS  Google Scholar 

  • Dvornyk V, Vinogradova O, Nevo E (2003) Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci USA 100:2495–2500

    Article  PubMed  CAS  Google Scholar 

  • Dvornyk V, Deng H-W, Nevo E (2004) Structure and molecular phylogeny of sasA genes in cyanobacteria: insights into evolution of the prokaryotic circadian system. Mol Biol Evol 21:1468–1476

    Article  PubMed  CAS  Google Scholar 

  • Gao T, Zhang X, Ivleva NB, Golden SS, LiWang A (2007) NMR structure of the pseudo-receiver domain of CikA. Protein Sci 16:465–475

    Article  PubMed  CAS  Google Scholar 

  • Garces RG, Wu N, Gillon W, Pai EF (2004) Anabaena circadian clock proteins KaiA and KaiB reveal a potential common binding site to their partner KaiC. EMBO J 23:1688–1698

    Article  PubMed  CAS  Google Scholar 

  • Harris NL, Presnell SR, Cohen FE (1994) Four helix bundle diversity in globular proteins. J Mol Biol 236:1356–1368

    Article  PubMed  CAS  Google Scholar 

  • Hayashi F, Iwase R, Uzumaki T, Ishiura M (2006) Hexamerization by the N-terminal domain and intersubunit phosphorylation by the C-terminal domain of cyanobacterial circadian clock protein KaiC. Biochem Biophys Res Commun 348:864–872

    Article  PubMed  CAS  Google Scholar 

  • Hitomi K, Oyama T, Han S, Arvai AS, Getzoff ED (2005) Tetrameric architecture of the circadian clock protein KaiB: a novel interface for intermolecular interactions and its impact on the circadian rhythm. J Biol Chem 280:19127–19135

    Article  PubMed  CAS  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523

    Article  PubMed  CAS  Google Scholar 

  • Ivleva NB, Gao T, LiWang A, Golden SS (2006) Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock. Proc Natl Acad Sci USA 103:17468–17473

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki H, Kondo T (2000) The current state and problems of circadian clock studies in cyanobacteria. Plant Cell Physiol 41:1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki H, Taniguchi Y, Ishiura M, Kondo T (1999) Physical interactions among circadian clock proteins KaiA, KaiB, and KaiC in cyanobacteria. EMBO J 18:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki H, Williams SB, Kitayama Y, Ishiura M, Golden SS, Kondo T (2000) A KaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101:223–233

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki H, Nishiwaki T, Kitayama Y, Nakajima M, Kondo T (2002) KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria. Proc Natl Acad Sci USA 99:15788–15793

    Article  PubMed  CAS  Google Scholar 

  • Iwase R, Imada K, Hayashi F, Uzumaki T, Morishita M, Onai K, Furukawa Y, Namba K, Ishiura M (2005) Functionally important substructures of circadian clock protein KaiB in a unique tetramer complex. J Biol Chem 280:43141–43149

    Article  PubMed  CAS  Google Scholar 

  • Kageyama H, Kondo T, Iwasaki H (2003) Circadian formation of clock protein complexes by KaiA, KaiB, KaiC, and SasA in cyanobacteria. J Biol Chem 278:2388–2395

    Article  PubMed  CAS  Google Scholar 

  • Kelley LA, MacCallum RM, Sternberg MJE (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:501–522

    Article  Google Scholar 

  • Kern D, Volkman BF, Luginbuhl P, Nohaile MJ, Kustu S, Wemmer DE (1999) Structure of a transiently phosphorylated switch in bacterial signal transduction. Nature 402:894–898

    Article  PubMed  CAS  Google Scholar 

  • Kim YI, Dong G, Carruthers CW Jr, Golden SS, LiWang A (2008) The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria. Proc Natl Acad Sci USA 105:12825–12830

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–D144

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Guo C, Barnewitz K, Sheldrick GM, Soling H-D, Uson I, Ferrari DM (2003) Crystal structure and functional analysis of Drosophila Wind, a protein-disulfide isomerase-related protein. J Biol Chem 278:44600–44607

    Article  PubMed  CAS  Google Scholar 

  • Mackey SR, Golden SS (2007) Winding up the cyanobacterial circadian clock. Trends Microbiol 15:381–388

    Article  PubMed  CAS  Google Scholar 

  • Martin JL (1995) Thioredoxin – a fold for all reasons. Structure 3:245–250

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Johnson CH (2001) Circadian programming in cyanobacteria. Semin Cell Dev Biol 12:271–278

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Williams DR, Byrne MO, Qin X, Egli M, McHaourab HS, Stewart PL, Johnson CH (2007) Elucidating the ticking of an in vitro circadian clockwork. PLoS Biol 5:841–853

    Article  CAS  Google Scholar 

  • Mutsuda M, Michel K-P, Zhang X, Montgomery BL, Golden SS (2003) Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942. J Biol Chem 278:19102–19110

    Article  PubMed  CAS  Google Scholar 

  • Nakahira Y, Katayama M, Miyashita H, Kutsuna S, Iwasaki H, Oyama T, Kondo T (2004) Global gene repression by KaiC as a master process of prokaryotic circadian system. Proc Natl Acad Sci USA 101:881–885

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H, Nakahira Y, Imai K, Tsuruhara A, Kondo H, Hayashi H, Hirai M, Saito H, Kondo T (2002) Mutations in KaiA, a clock protein, extend the period of circadian rhythm in the cyanobacterium Synechococcus elongatus PCC 7942. Microbiology 148:2903–2909

    PubMed  CAS  Google Scholar 

  • Nishiwaki T, Iwasaki H, Ishiura M, Kondo T (2000) Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. Proc Natl Acad Sci USA 97:495–499

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki T, Satomi Y, Kitayama Y, Terauchi K, Kiyohara R, Takao T, Kondo T (2007) A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. EMBO J 26:4029–4037

    Article  PubMed  CAS  Google Scholar 

  • O'Hara BP, Norman RA, Wan PTC, Roe SM, Barrett TE, Drew RE, Pearl LH (1999) Crystal structure and induction mechanism of AmiC-AmiR: a ligand-regulated transcription antitermi-nation complex. EMBO J 18:5175–5186

    Article  PubMed  Google Scholar 

  • Ollerenshaw JE, Tugarinov V, Kay LE (2003) Methyl TROSY: explanation and experimental verification. Magn Reson Chem 41:843–852

    Article  CAS  Google Scholar 

  • Pattanayek R, Wang J, Mori T, Xu Y, Johnson CH, Egli M (2004) Visualizing a circadian clock protein: crystal structure of KaiC and functional insights. Mol Cell 15:375–388

    Article  PubMed  CAS  Google Scholar 

  • Pattanayek R, Williams DR, Pattanayek S, Xu Y, Mori T, Johnson CH, Stewart PL, Egli M (2006) Analysis of KaiA–KaiC protein interactions in the cyanobacterial circadian clock using hybrid structural methods. EMBO J 25:2017–2028

    Article  PubMed  CAS  Google Scholar 

  • Pattanayek R, Williams DR, Pattanayek S, Mori T, Johnson CH, Stewart PL, Egli M (2008) Structural model of the circadian clock KaiB–KaiC complex and mechanism for modulation of KaiC phosphorylation. EMBO J 27:1767–1778

    Article  PubMed  CAS  Google Scholar 

  • Robinson VL, Buckler DR, Stock AM (2000) A tale of two components: a novel kinase and a regulatory switch. Nat Struct Mol Biol 7:626–633

    Article  CAS  Google Scholar 

  • Russo AA, Jeffrey PD, Pavletich NP (1996) Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Mol Biol 3:696–700

    Article  CAS  Google Scholar 

  • Rust MJ, Markson JS, Lane WS, Fisher DS, O'Shea EK (2007) Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318:809–812

    Article  PubMed  CAS  Google Scholar 

  • Schmitz O, Katayama M, Williams SB, Kondo T, Golden SS (2000) CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289:765–768

    Article  PubMed  CAS  Google Scholar 

  • Smith RM, Williams SB (2006) Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci USA 103:8564–8569

    Article  PubMed  CAS  Google Scholar 

  • Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622

    Article  PubMed  CAS  Google Scholar 

  • Sprangers R, Velyvis A, Kay LE (2007) Solution NMR of supramolecular complexes: providing new insights into function. Nat Methods 4:697–703

    Article  PubMed  CAS  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  PubMed  CAS  Google Scholar 

  • Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Más P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771

    Article  PubMed  CAS  Google Scholar 

  • Takai N, Nakajima M, Oyama T, Kito R, Sugita C, Sugita M, Kondo T, Iwasaki H (2006) A KaiC-associating SasA–RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc Natl Acad Sci USA 103:12109–12114

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi Y, Yamaguchi A, Hijikata A, Iwasaki H, Kamagata K, Ishiura M, Go M, Kondo T (2001) Two KaiA-binding domains of cyanobacterial circadian clock protein KaiC. FEBS Lett 496:86–90

    Article  PubMed  CAS  Google Scholar 

  • Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428

    Article  PubMed  CAS  Google Scholar 

  • Uzumaki T, Fujita M, Nakatsu T, Hayashi F, Shibata H, Itoh N, Kato H, Ishiura M (2004) Crystal structure of the C-terminal clock-oscillator domain of the cyanobacterial KaiA protein. Nat Struct Mol Biol 11:623–631

    Article  PubMed  CAS  Google Scholar 

  • Vakonakis I, LiWang AC (2004) Structure of the C-terminal domain of the clock protein KaiA in complex with a KaiC-derived peptide: implications for KaiC regulation. Proc Natl Acad Sci USA 101:10925–10930

    Article  PubMed  CAS  Google Scholar 

  • Vakonakis I, Risinger AT, Latham MP, Williams SB, Golden SS, LiWang AC (2001) Sequence-specific 1H, 13C and 15N resonance assignments of the N-terminal, 135-residue domain of KaiA, a clock protein from Synechococcus elongatus. J Biomol NMR 21:179–180

    Article  PubMed  CAS  Google Scholar 

  • Vakonakis I, Klewer DA, Williams SB, Golden SS, LiWang AC (2004a) Structure of the N-terminal domain of the circadian clock-associated histidine kinase SasA. J Mol Biol 342:9–17

    Article  CAS  Google Scholar 

  • Vakonakis I, Sun J, Wu T, Holzenburg A, Golden SS, LiWang AC (2004b) NMR structure of the KaiC-interacting C-terminal domain of KaiA, a circadian clock protein: implications for the KaiA–KaiC interaction. Proc Natl Acad Sci USA 101:1479–1484

    Article  CAS  Google Scholar 

  • Velyvis A, Yang YR, Schachman HK, Kay LE (2007) A solution NMR study showing that active site ligands and nucleotides directly perturb the allosteric equilibrium in aspartate transcarbamoylase. Proc Natl Acad Sci USA 104:8815–8820

    Article  PubMed  CAS  Google Scholar 

  • Volkman BF, Lipson D, Wemmer DE, Kern D (2001) Two-state allosteric behavior in a singledomain signaling protein. Science 291:2429–2433

    Article  PubMed  CAS  Google Scholar 

  • Volz K (1993) Structural conservation in the CheY superfamily. Biochemistry 32:11741–11753

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT (2006). Posttranslational modification of proteins: expanding nature's inventory. Roberts, Englewood

    Google Scholar 

  • Williams SB, Vakonakis I, Golden SS, LiWang AC (2002) Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: A potential clock input mechanism. Proc Natl Acad Sci USA 99:15357–15362

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci USA 96:151–156

    Article  PubMed  CAS  Google Scholar 

  • Ye S, Vakonakis I, Ioerger TR, LiWang AC, Sacchettini JC (2004) Crystal structure of circadian clock protein KaiA from Synechococcus elongatus. J Biol Chem 279:20511–20518

    Article  PubMed  CAS  Google Scholar 

  • Zapf J, Sen U, Madhusudan, Hoch JA, Varughese KI (2000) A transient interaction between two phosphorelay proteins trapped in a crystal lattice reveals the mechanism of molecular recognition and phosphotransfer in signal transduction. Structure 8:851–862

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Dong G, Golden SS (2006) The pseudo-receiver domain of CikA regulates the cyanobacterial circadian input pathway. Mol Microbiol 60:658–668

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vakonakis, I., LiWang, A. (2009). NMR Studies of a Timekeeping System. In: Ditty, J.L., Mackey, S.R., Johnson, C.H. (eds) Bacterial Circadian Programs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88431-6_6

Download citation

Publish with us

Policies and ethics