Skip to main content

Model Predictive Control of Vehicle Formations

  • Conference paper
Optimization and Cooperative Control Strategies

Abstract

We propose a two-layer scheme to control a set of vehicles moving in a formation.

The first layer, the trajectory controller, is a nonlinear controller since most vehicles are nonholonomic systems and require a nonlinear, even discontinuous, feedback to stabilize them. The trajectory controller, a model predictive controller, computes centrally a bang-bang control law and only a small set of parameters need to be transmitted to each vehicle at each iteration.

The second layer, the formation controller, aims to compensate for small changes around a nominal trajectory maintaining the relative positions between vehicles. We argue that the formation control can be, in most cases, adequately carried out by a linear model predictive controller accommodating input and state constraints. This has the advantage that the control laws for each vehicle are simple piecewise affine feedback laws that can be pre-computed off-line and implemented in a distributed way in each vehicle.

Although several optimization problems have to be solved, the control strategy proposed results in a simple and efficient implementation where no optimization problem needs to be solved in real-time at each vehicle.

Research supported by FCT/POCI 2010/FEDER through Project POCTI/MAT/ 61842/2004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alamir, M.: Stabilization of Nonlinear Systems Using Receding-Horizon Control Schemes: A Parameterized Approach for Fast System. Lecture Notes in Control and Information Sciences. Springer, London (2006)

    Google Scholar 

  2. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38, 3–20 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Brockett, R.W., Millman, R.S., Sussmann, H.S. (eds.) Differential Geometric Control Theory, pp. 181–191. Birkhouser, Boston (1983)

    Google Scholar 

  4. Chen, H., Allgöwer, F.: Nonlinear model predictive control schemes with guaranteed stability. In: Berber, R., Kravaris, C. (eds.) Nonlinear Model Based Process Control. Kluwer, Dordrecht (1998)

    Google Scholar 

  5. Dunbar, W.B., Murray, R.M.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42, 549–558 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Findeisen, R., Imsland, L., Allgöwer, F., Foss, B.: State and output feedback nonlinear model predictive control: an overview. European Journal of Control 9, 190–206 (2003)

    Article  Google Scholar 

  7. Fontes, F.A.C.C.: A general framework to design stabilizing nonlinear model predictive controllers. Systems & Control Letters 42, 127–143 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fontes, F.A.C.C.: Discontinuous feedbacks, discontinuous optimal controls, and continuous-time model predictive control. International Journal of Robust and Nonlinear Control 13(3–4), 191–209 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fontes, F.A.C.C., Magni, L.: Min-max model predictive control of nonlinear systems using discontinuous feedbacks. IEEE Transactions on Automatic Control 48, 1750–1755 (2003)

    Article  MathSciNet  Google Scholar 

  10. Fontes, F.A.C.C., Magni, L., Gyurkovics, E.: Sampled-data model predictive control for nonlinear time-varying systems: Stability and robustness. In: Allgower, F., Findeisen, R., Biegler, L. (eds.) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Systems, vol. 358, pp. 115–129. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Ghabcheloo, R., Pascoal, A., Silvestre, C., Kaminer, I.: Non-linear co-ordinated path following control of multiple wheeled robots with bidirectional communication constraints. International Journal of Adaptive Control and Signal Processing 21, 133–157 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goodwin, G.C., Seron, M.M., De Doná, J.A.: Constrained Control and Estimation: An Optimisation Approach. Springer, London (2004)

    Google Scholar 

  13. Kolmanovsky, I., McClamroch, N.H.: Developments in nonholonomic control problems. IEEE Control Systems, 20–36 (December 1995)

    Google Scholar 

  14. Kvasnica, M., Grieder, P., Baotic, M., Christophersen, F.J.: MPT - Multiparametric Toolbox. Technical report, ETH - Swiss Federal Institute of Technology, Zurich (2006)

    Google Scholar 

  15. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, Harlow (2002)

    Google Scholar 

  16. Magni, L., Scattolini, R.: Model predictive control of continuous-time nonlinear systems with piecewise constant control. IEEE Transactions on Automatic Control 49, 900–906 (2004)

    Article  MathSciNet  Google Scholar 

  17. Magni, L., Sepulchre, R.: Stability margins of nonlinear receding horizon control via inverse optimality. Systems and Control Letters 32, 241–245 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mayne, D.Q.: Control of constrained dynamic systems. European Journal of Control; Special issue: Fundamental Issues in Control 7, 87–99 (2001)

    Google Scholar 

  19. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: Stability and optimality. Automatica 36, 789–814 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Murray, R.M.: Recent research in cooperative control of multi-vehicle systems. Journal of Dynamic Systems, Measurement and Control 129, 571–583 (2007)

    Article  Google Scholar 

  21. Qin, S., Badgwell, T.: An overview of industrial model predictive control technology. Control Engineering Practice 11, 733–764 (2003)

    Article  Google Scholar 

  22. Raimondo, D.M., Magni, L., Scattolini, R.: Decentralized MPC of nonlinear systems: An input-to-state stability approach. International Journal Of Robust And Nonlinear Control 17, 1651–1667 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sontag, E.D., Sussman, H.J.: Remarks on continuous feedback. In: IEEE Conference on Decision and Control, Albuquerque, pp. 916–921 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fontes, F.A.C.C., Fontes, D.B.M.M., Caldeira, A.C.D. (2009). Model Predictive Control of Vehicle Formations. In: Hirsch, M.J., Commander, C.W., Pardalos, P.M., Murphey, R. (eds) Optimization and Cooperative Control Strategies. Lecture Notes in Control and Information Sciences, vol 381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88063-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88063-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88062-2

  • Online ISBN: 978-3-540-88063-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics