Skip to main content

Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids

  • Chapter
Book cover Advanced Computer Simulation Approaches for Soft Matter Sciences III

Part of the book series: Advances in Polymer Science ((POLYMER,volume 221))

In this review, we describe and analyze a mesoscale simulation method for fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now called multi-particle collision dynamics (MPC) or stochastic rotation dynamics (SRD). The method consists of alternating streaming and collision steps in an ensemble of point particles. The multi-particle collisions are performed by grouping particles in collision cells, and mass, momentum, and energy are locally conserved. This simulation technique captures both full hydrodynamic interactions and thermal fluctuations. The first part of the review begins with a description of several widely used MPC algorithms and then discusses important features of the original SRD algorithm and frequently used variations. Two complementary approaches for deriving the hydrodynamic equations and evaluating the transport coefficients are reviewed. It is then shown how MPC algorithms can be generalized to model non-ideal fluids, and binary mixtures with a consolute point. The importance of angular-momentum conservation for systems like phase-separated liquids with different viscosities is discussed. The second part of the review describes a number of recent applications of MPC algorithms to study colloid and polymer dynamics, the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of vis-coelastic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett. 19, 155 (1992).

    Google Scholar 

  2. P. Espanol, Phys. Rev. E 52, 1734 (1995).

    CAS  Google Scholar 

  3. P. Espanol and P. B. Warren, Europhys. Lett. 30, 191 (1995).

    CAS  Google Scholar 

  4. G. R. McNamara and G. Zanetti, Phys. Rev. Lett. 61, 2332 (1988).

    Google Scholar 

  5. X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993).

    Google Scholar 

  6. X. He and L.-S. Luo, Phys. Rev. E 56, 6811 (1997).

    CAS  Google Scholar 

  7. G. A. Bird,Molecular Gas Dynamics and the Direct Simulation of Gas Flows(Oxford University Press, Oxford, 1994).

    Google Scholar 

  8. F. J. Alexander and A. L. Garcia, Comp. in Phys. 11, 588 (1997).

    CAS  Google Scholar 

  9. A. L. Garcia,Numerical Methods for Physics(Prentice Hall, 2000).

    Google Scholar 

  10. U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56, 1505 (1986).

    CAS  Google Scholar 

  11. R. Adhikari, K. Stratford, M. E. Cates, and A. J. Wagner, Europhys. Lett. 71, 473 (2005). Department of Physics, North Dakota State University, Fargo, ND 58108-6050, USA e-mail: thomas.ihle@ndsu.edu; daniel.kroll@ndsu.edu

    CAS  Google Scholar 

  12. J. K. G. Dhont,An Introduction to Dynamics of Colloids(Elsevier, Amsterdam, 1996).

    Google Scholar 

  13. R. G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, Oxford, 1999).

    Google Scholar 

  14. M. Ripoll, K. Mussawisade, R. G. Winkler, and G. Gompper, Europhys. Lett. 68, 106 (2004).

    CAS  Google Scholar 

  15. M. Ripoll, K. Mussawisade, R. G. Winkler, and G. Gompper, Phys. Rev. E 72, 016701 (2005).

    CAS  Google Scholar 

  16. M. Hecht, J. Harting, T. Ihle, and H. J. Herrmann, Phys. Rev. E 72, 011408 (2005).

    Google Scholar 

  17. J. T. Padding and A. A. Louis, Phys. Rev. E 74, 031402 (2006).

    CAS  Google Scholar 

  18. A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).

    CAS  Google Scholar 

  19. A. Malevanets and R. Kapral, J. Chem. Phys. 112, 7260 (2000).

    CAS  Google Scholar 

  20. T. Ihle and D. M. Kroll, Phys. Rev. E 67, 066705 (2003).

    CAS  Google Scholar 

  21. T. Ihle and D. M. Kroll, Phys. Rev. E 63, 020201(R) (2001).

    Google Scholar 

  22. A. Mohan and P. S. Doyle, Macromolecules 40, 4301 (2007).

    CAS  Google Scholar 

  23. J. M. Kim and P. S. Doyle, J. Chem. Phys. 125, 074906 (2006).

    Google Scholar 

  24. N. Kikuchi, A. Gent, and J. M. Yeomans, Eur. Phys. J. E 9, 63 (2002).

    CAS  Google Scholar 

  25. M. Ripoll, R. G. Winkler, and G. Gompper, Eur. Phys. J. E 23, 349 (2007).

    CAS  Google Scholar 

  26. N. Kikuchi, C. M. Pooley, J. F. Ryder, and J. M. Yeomans, J. Chem. Phys. 119, 6388 (2003).

    CAS  Google Scholar 

  27. T. Ihle and D. M. Kroll, Phys. Rev. E 67, 066706 (2003).

    CAS  Google Scholar 

  28. T. Ihle, E. Tüzel, and D. M. Kroll, Phys. Rev. E 72, 046707 (2005).

    CAS  Google Scholar 

  29. J. A. Backer, C. P. Lowe, H. C. J. Hoefsloot, and P. D. Iedema, J. Chem. Phys. 122, 1 (2005).

    Google Scholar 

  30. R. Kapral, Adv. Chem. Phys., to appear (2008).

    Google Scholar 

  31. E. Allahyarov and G. Gompper, Phys. Rev. E 66, 036702 (2002).

    CAS  Google Scholar 

  32. N. Noguchi, N. Kikuchi, and G. Gompper, Europhys. Lett. 78, 10005 (2007).

    Google Scholar 

  33. T. Ihle, E. Tüzel, and D. M. Kroll, Europhys. Lett. 73, 664 (2006).

    CAS  Google Scholar 

  34. E. Tüzel, T. Ihle, and D. M. Kroll, Math. Comput. Simulat. 72, 232 (2006).

    Google Scholar 

  35. C. M. Pooley and J. M. Yeomans, J. Phys. Chem. B 109, 6505 (2005).

    CAS  Google Scholar 

  36. A. Lamura, G. Gompper, T. Ihle, and D. M. Kroll, Europhys. Lett. 56, 319 (2001).

    CAS  Google Scholar 

  37. H. Noguchi and G. Gompper, Phys. Rev. Lett. 93, 258102 (2004).

    Google Scholar 

  38. I. O. Götze, H. Noguchi, and G. Gompper, Phys. Rev. E 76, 046705 (2007).

    Google Scholar 

  39. J. F. Ryder,Mesoscopic Simulations of Complex Fluids, Ph.D. thesis, University of Oxford (2005).

    Google Scholar 

  40. I. O. Götze, private communication (2007).

    Google Scholar 

  41. J. Erpenbeck, Phys. Rev. Lett. 52, 1333 (1984).

    CAS  Google Scholar 

  42. M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids(Clarendon Press, Oxford, 1987).

    Google Scholar 

  43. J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950).

    CAS  Google Scholar 

  44. H. T. Davis,Statistical Mechanics of Phases, Interfaces, and Thin Films(VCH Publishers, Inc., 1996).

    Google Scholar 

  45. E. Tüzel, G. Pan, T. Ihle, and D. M. Kroll, Europhys. Lett. 80, 40010 (2007).

    Google Scholar 

  46. F. Reif,Fundamentals of Statistical and Thermal Physics(Mc-Graw Hill, 1965).

    Google Scholar 

  47. R. Zwanzig,Lectures in Theoretical Physics, vol. 3 (Wiley, New York, 1961).

    Google Scholar 

  48. H. Mori, Prog. Theor. Phys. 33, 423 (1965).

    Google Scholar 

  49. H. Mori, Prog. Theor. Phys. 34, 399 (1965).

    Google Scholar 

  50. J. W. Dufty and M. H. Ernst, J. Phys. Chem. 93, 7015 (1989).

    CAS  Google Scholar 

  51. T. Ihle, E. Tu¨zel, and D. M. Kroll, Phys. Rev. E 70, 035701(R) (2004).

    Google Scholar 

  52. C. M. Pooley,Mesoscopic Modelling Techniques for Complex Fluids, Ph.D. thesis, University of Oxford (2003).

    Google Scholar 

  53. E. Tüzel, M. Strauss, T. Ihle, and D. M. Kroll, Phys. Rev. E 68, 036701 (2003).

    Google Scholar 

  54. E. Tuüzel,Particle-based mesoscale modeling of flow and transport in complex fluids, Ph.D. thesis, University of Minnesota (2006).

    Google Scholar 

  55. T. Ihle and E. Tu¨zel, Prog. Comp. Fluid Dynamics 8, 123 (2008).

    Google Scholar 

  56. B. J. Berne and R. Pecora,Dynamic Light Scattering: With Applications to Chemistry, Biology and Physics(Wiley, New York, 1976).

    Google Scholar 

  57. E. Tüzel, T. Ihle, and D. M. Kroll, Phys. Rev. E 74, 056702 (2006).

    Google Scholar 

  58. H. Noguchi and G. Gompper, Europhys. Lett. 79, 36002 (2007).

    Google Scholar 

  59. H. Noguchi and G. Gompper, Phys. Rev. E 78, 016706 (2008).

    Google Scholar 

  60. T. Ihle, J. Phys.: Condens. Matter 20., 235224 (2008).

    Google Scholar 

  61. H. B. Callen,Thermodynamics(Wiley, New York, 1960).

    Google Scholar 

  62. Y. Hashimoto, Y. Chen, and H. Ohashi, Comp. Phys. Commun. 129, 56 (2000).

    CAS  Google Scholar 

  63. Y. Inoue, Y. Chen, and H. Ohashi, Comp. Phys. Commun. 201, 191 (2004).

    CAS  Google Scholar 

  64. Y. Inoue, S. Takagi, and Y. Matsumoto, Comp. Fluids 35, 971 (2006).

    CAS  Google Scholar 

  65. T. Sakai, Y. Chen, and H. Ohashi, Comp. Phys. Commun. 129, 75 (2000).

    CAS  Google Scholar 

  66. T. Sakai, Y. Chen, and H. Ohashi, Phys. Rev. E 65, 031503 (2002).

    Google Scholar 

  67. T. Sakai, Y. Chen, and H. Ohashi, Colloids Surf., A 201, 297 (2002).

    CAS  Google Scholar 

  68. A. Malevanets and J. M. Yeomans, Europhys. Lett.52, 231 (2000).

    CAS  Google Scholar 

  69. J. Elgeti and G. Gompper, inNIC Symposium 2008, edited by G. Münster, D. Wolf, and M. Kremer (Neumann Institute for Computing, Jülich, 2008), vol. 39 ofNIC series, pp. 53– 61.

    Google Scholar 

  70. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).

    Google Scholar 

  71. E. Falck, O. Punkkinen, I. Vattulainen, and T. Ala-Nissila, Phys. Rev. E 68, 050102(R) (2003).

    CAS  Google Scholar 

  72. R. G. Winkler, K. Mussawisade, M. Ripoll, and G. Gompper, J. Phys.: Condens. Matter 16, S3941 (2004).

    CAS  Google Scholar 

  73. K. Mussawisade, M. Ripoll, R. G. Winkler, and G. Gompper, J. Chem. Phys. 123, 144905 (2005).

    CAS  Google Scholar 

  74. M. A. Webster and J. M. Yeomans, J. Chem. Phys. 122, 164903 (2005).

    CAS  Google Scholar 

  75. E. Falck, J. M. Lahtinen, I. Vattulainen, and T. Ala-Nissila, Eur. Phys. J. E 13, 267 (2004).

    CAS  Google Scholar 

  76. M. Hecht, J. Harting, and H. J. Herrmann, Phys. Rev. E 75, 051404 (2007).

    Google Scholar 

  77. S. H. Lee and R. Kapral, J. Chem. Phys. 121, 11163 (2004).

    CAS  Google Scholar 

  78. Y. Inoue, Y. Chen, and H. Ohashi, J. Stat. Phys. 107, 85 (2002).

    Google Scholar 

  79. J. T. Padding, A. Wysocki, H. Löwen, and A. A. Louis, J. Phys.: Condens. Matter 17, S3393 (2005).

    CAS  Google Scholar 

  80. S. H. Lee and R. Kapral, Physica A 298, 56 (2001).

    CAS  Google Scholar 

  81. A. Lamura and G. Gompper, Eur. Phys. J. E 9, 477 (2002).

    CAS  Google Scholar 

  82. J. T. Padding, private communication (2007).

    Google Scholar 

  83. C. Pierleoni and J.-P. Ryckaert, Phys. Rev. Lett. 61, 2992 (1991).

    Google Scholar 

  84. B. Duünweg and K. Kremer, Phys. Rev. Lett. 66, 2996 (1991).

    Google Scholar 

  85. C. Pierleoni and J.-P. Ryckaert, J. Chem. Phys. 96, 8539 (1992).

    CAS  Google Scholar 

  86. B. Dünweg and K. Kremer, J. Chem. Phys. 99, 6983 (1993).

    Google Scholar 

  87. C. Aust, M. Kröger, and S. Hess, Macromolecules 32, 5660 (1999).

    CAS  Google Scholar 

  88. E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, and P. van der Schoot, Phys. Rev. E 55, 3124 (1997).

    CAS  Google Scholar 

  89. P. Ahlrichs and B. Dünweg, Int. J. Mod. Phys. C 9, 1429 (1998).

    Google Scholar 

  90. P. Ahlrichs, R. Everaers, and B. Dünweg, Phys. Rev. E 64, 040501 (2001).

    CAS  Google Scholar 

  91. N. A. Spenley, Europhys. Lett. 49, 534 (2000).

    CAS  Google Scholar 

  92. C. P. Lowe, A. F. Bakker, and M. W. Dreischor, Europhys. Lett. 67, 397 (2004).

    CAS  Google Scholar 

  93. G. K. Batchelor, J. Fluid Mech. 52, 245 (1972).

    Google Scholar 

  94. A. J. C. Ladd, Phys. Fluids 9, 481 (1997).

    Google Scholar 

  95. K. Höfler and S. Schwarzer, Phys. Rev. E 61, 7146 (2000).

    Google Scholar 

  96. J. T. Padding and A. A. Louis, Phys. Rev. Lett. 93, 220601 (2004).

    CAS  Google Scholar 

  97. H. Hayakawa and K. Ichiki, Phys. Rev. E 51, R3815 (1995).

    CAS  Google Scholar 

  98. H. Hayakawa and K. Ichiki, Phys. Fluids 9, 481 (1997).

    Google Scholar 

  99. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. Lett. 25, 1254 (1970).

    Google Scholar 

  100. M. Hecht, J. Harting, M. Bier, J. Reinshagen, and H. J. Herrmann, Phys. Rev. E 74, 021403 (2006).

    Google Scholar 

  101. B. V. Derjaguin and D. P. Landau, Acta Phys. Chim. 14, 633 (1941).

    Google Scholar 

  102. W. B. Russel, D. A. Saville, and W. Schowalter, Colloidal dispersions (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  103. S. H. Lee and R. Kapral, J. Chem. Phys. 122, 214916 (2005).

    Google Scholar 

  104. J. G. Kirkwood and J. Riseman, J. Chem. Phys. 16, 565 (1948).

    CAS  Google Scholar 

  105. J. P. Erpenbeck and J. G. Kirkwood, J. Chem. Phys. 29, 909 (1958).

    CAS  Google Scholar 

  106. E. P. Petrov, T. Ohrt, R. G. Winkler, and P. Schwille, Phys. Rev. Lett. 97, 258101 (2006).

    CAS  Google Scholar 

  107. B. H. Zimm, J. Chem. Phys. 24, 269 (1956).

    CAS  Google Scholar 

  108. S. H. Lee and R. Kapral, J. Chem. Phys. 124, 214901 (2006).

    Google Scholar 

  109. M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. A 4, 2055 (1971).

    Google Scholar 

  110. J.-P. Hansen and I. R. McDonald,Theory of Simple Liquids(Academic Press, London, 1986).

    Google Scholar 

  111. B. Liu and B. Dünweg, J. Chem. Phys. 118, 8061 (2003).

    CAS  Google Scholar 

  112. P. Ahlrichs and B. Dünweg, J. Chem. Phys. 111, 8225 (1999).

    CAS  Google Scholar 

  113. M. Fixmann, J. Chem. Phys. 78, 1594 (1983).

    Google Scholar 

  114. M. Schmidt and W. Burchard, Macromolecules 14, 210 (1981).

    CAS  Google Scholar 

  115. W. H. Stockmayer and B. Hammouda, Pure & Appl. Chem. 56, 1373 (1984).

    CAS  Google Scholar 

  116. P. E. Rouse, J. Chem. Phys. 21, 1272 (1953).

    CAS  Google Scholar 

  117. P. G. de Gennes,Scaling Concepts in Polymer Physics(Cornell University, Ithaca, 1979).

    Google Scholar 

  118. J. des Cloizeaux and G. Jannink, Polymer Solutions: Their Modelling and Structure (Clarendon Press, Oxford, 1990).

    Google Scholar 

  119. D. Ceperly, M. H. Kalos, and J. L. Lebowitz, Macromolecules 14, 1472 (1981).

    Google Scholar 

  120. K. Kremer and K. Binder, Comput. Phys. Rep. 7, 261 (1988).

    Google Scholar 

  121. R. G. Winkler, L. Harnau, and P. Reineker, Macromol. Theory Simul. 6, 1007 (1997).

    CAS  Google Scholar 

  122. R. Chang and A. Yethiraj, J. Chem. Phys. 114, 7688 (2001).

    CAS  Google Scholar 

  123. N. Kikuchi, A. Gent, and J. M. Yeomans, Eur. Phys. J. E 9, 63 (2002).

    CAS  Google Scholar 

  124. N. Kikuchi, J. F. Ryder, C. M. Pooley, and J. M. Yeomans, Phys. Rev. E 71, 061804 (2005).

    CAS  Google Scholar 

  125. I. Ali and J. M. Yeomans, J. Chem. Phys. 123, 234903 (2005).

    CAS  Google Scholar 

  126. I. Ali and J. M. Yeomans, J. Chem. Phys. 121, 8635 (2004).

    CAS  Google Scholar 

  127. I. Ali, D. Marenduzzo, and J. F. D. Yeomans, Phys. Rev. Lett. 96, 208102 (2006).

    CAS  Google Scholar 

  128. N. Watari, M. Makino, N. Kikuchi, R. G. Larson, and M. Doi, J. Chem. Phys. 126, 09490 (2007).

    Google Scholar 

  129. F. Brochard-Wyart, Europhys. Lett. 23, 105 (1993).

    Google Scholar 

  130. F. Brochard-Wyart, H. Hervet, and P. Pincus, Europhys. Lett. 26, 511 (1994).

    CAS  Google Scholar 

  131. F. Brochard-Wyart, Europhys. Lett. 30, 210 (1995).

    Google Scholar 

  132. L. Cannavacciuolo, R. G. Winkler, and G. Gompper, EPL 83, 34007 (2008).

    Google Scholar 

  133. U. S. Agarwal, A. Dutta, and R. A. Mashelkar, Chem. Eng. Sci. 49, 1693 (1994).

    CAS  Google Scholar 

  134. R. M. Jendrejack, D. C. Schwartz, J. J. de Pablo, and M. D. Graham, J. Chem. Phys. 120, 2513 (2004).

    CAS  Google Scholar 

  135. O. B. Usta, J. E. Butler, and A. J. C. Ladd, Phys. Fluids 18, 031703 (2006).

    Google Scholar 

  136. R. Khare, M. D. Graham, and J. J. de Pablo, Phys. Rev. Lett. 96, 224505 (2006).

    Google Scholar 

  137. D. Stein, F. H. J. van der Heyden, W. J. A. Koopmans, and C. Dekker, Proc. Natl. Acad. Sci. USA 103, 15853 (2006).

    CAS  Google Scholar 

  138. O. B. Usta, J. E. Butler, and A. J. C. Ladd, Phys. Rev. Lett. 98, 098301 (2007).

    Google Scholar 

  139. G. S. Grest, K. Kremer, and T. A. Witten, Macromolecules 20, 1376 (1987).

    CAS  Google Scholar 

  140. C. N. Likos, Phys. Rep. 348, 267 (2001).

    CAS  Google Scholar 

  141. D. Vlassopoulos, G. Fytas, T. Pakula, and J. Roovers, J. Phys.: Condens. Matter 13, R855 (2001).

    CAS  Google Scholar 

  142. M. Ripoll, R. G. Winkler, and G. Gompper, Phys. Rev. Lett. 96, 188302 (2006).

    CAS  Google Scholar 

  143. G. S. Grest, K. Kremer, S. T. Milner, and T. A. Witten, Macromolecules 22, 1904 (1989).

    CAS  Google Scholar 

  144. D. R. Mikulencak and J. F. Morris, J. Fluid Mech. 520, 215 (2004).

    Google Scholar 

  145. A. Link and J. Springer, Macromolecules 26, 464 (1993).

    CAS  Google Scholar 

  146. R. E. Teixeira, H. P. Babcock, E. S. G. Shaqfeh, and S. Chu, Macromolecules 38, 581 (2005).

    CAS  Google Scholar 

  147. R. G. Winkler, Phys. Rev. Lett. 97, 128301 (2006).

    Google Scholar 

  148. P. G. de Gennes, J. Chem. Phys. 60, 5030 (1974).

    Google Scholar 

  149. P. LeDuc, C. Haber, G. Bao, and D. Wirtz, Nature (London) 399, 564 (1999).

    CAS  Google Scholar 

  150. D. E. Smith, H. P. Babcock, and S. Chu, Science 283, 1724 (1999).

    CAS  Google Scholar 

  151. C. Aust, M. Kröger, and S. Hess, Macromolecules 35, 8621 (2002).

    CAS  Google Scholar 

  152. Y. Navot, Phys. Fluids 10, 1819 (1998).

    CAS  Google Scholar 

  153. R. Goetz and R. Lipowsky, J. Chem. Phys. 108, 7397 (1998).

    CAS  Google Scholar 

  154. R. Goetz, G. Gompper, and R. Lipowsky, Phys. Rev. Lett.82, 221 (1999).

    CAS  Google Scholar 

  155. W. K. den Otter and W. J. Briels, J. Chem. Phys. 118, 4712 (2003).

    Google Scholar 

  156. J. C. Shillcock and R. Lipowsky, J. Chem. Phys. 117, 5048 (2002).

    CAS  Google Scholar 

  157. L. Rekvig, B. Hafskjold, and B. Smit, Phys. Rev. Lett. 92, 116101 (2004).

    Google Scholar 

  158. M. Laradji and P. B. S. Kumar, Phys. Rev. Lett. 93, 198105 (2004).

    Google Scholar 

  159. V. Ortiz, S. O. Nielsen, D. E. Discher, M. L. Klein, R. Lipowsky, and J. Shillcock, J. Phys Chem. B 109, 17708 (2005).

    CAS  Google Scholar 

  160. M. Venturoli, M. M. Sperotto, M. Kranenburg, and B. Smit, Phys. Rep. 437, 1 (2006).

    CAS  Google Scholar 

  161. H. Noguchi and M. Takasu, J. Chem. Phys. 115, 9547 (2001).

    CAS  Google Scholar 

  162. H. Noguchi, J. Chem. Phys. 117, 8130 (2002).

    CAS  Google Scholar 

  163. O. Farago, J. Chem. Phys. 119, 596 (2003).

    CAS  Google Scholar 

  164. I. R. Cooke, K. Kremer, and M. Deserno, Phys. Rev. E 72, 011506 (2005).

    Google Scholar 

  165. W. Helfrich and Z. Naturforsch. 28c, 693 (1973).

    Google Scholar 

  166. G. Gompper and D. M. Kroll, J. Phys.: Condens. Matter9, 8795 (1997).

    CAS  Google Scholar 

  167. G. Gompper and D. M. Kroll, inStatistical Mechanics of Membranes and Surfaces, edited by D. R. Nelson, T. Piran, and S. Weinberg (World Scientific, Singapore, 2004), pp. 359–426, 2nd ed.

    Google Scholar 

  168. J. M. Drouffe, A. C. Maggs, and S. Leibler, Science254, 1353 (1991).

    CAS  Google Scholar 

  169. H. Noguchi and G. Gompper, Phys. Rev. E73, 021903 (2006).

    Google Scholar 

  170. J.-S. Ho and A. Baumgärtner, Europhys. Lett.12, 295 (1990).

    Google Scholar 

  171. D. M. Kroll and G. Gompper, Science255, 968 (1992).

    CAS  Google Scholar 

  172. D. H. Boal and M. Rao, Phys. Rev. A45, R6947 (1992).

    CAS  Google Scholar 

  173. G. Gompper and D. M. Kroll, J. Phys. I France6, 1305 (1996).

    Google Scholar 

  174. C. Itzykson, inProceedings of the GIFT Seminar, Jaca 85, edited by J. Abad, M. Asorey, an A. Cruz (World Scientific, Singapore, 1986), pp. 130–188.

    Google Scholar 

  175. G. Gompper, inSoft Matter — Complex Materials on Mesoscopic Scales, edited by J. K. G Dhont, G. Gompper, and D. Richter (Forschungszentrum Jülich, Jülich, 2002), vol. 10 ofMatter and Materials.

    Google Scholar 

  176. U. Seifert, K. Berndl, and R. Lipowsky, Phys. Rev. A44, 1182 (1991).

    Google Scholar 

  177. G. Gompper and D. M. Kroll, Phys. Rev. Lett.73, 2139 (1994).

    CAS  Google Scholar 

  178. G. Gompper and D. M. Kroll, Phys. Rev. E51, 514 (1995).

    CAS  Google Scholar 

  179. H.-G. Döbereiner, G. Gompper, C. Haluska, D. M. Kroll, P. G. Petrov, and K. A. Riske, Phys. Rev. Lett.91, 048301 (2003).

    Google Scholar 

  180. H. Noguchi and G. Gompper, Phys. Rev. E72, 011901 (2005).

    Google Scholar 

  181. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P.Walter, Molecular Biology of the Cell(Garland, New York, 2007), 5th ed.

    Google Scholar 

  182. N. Mohandas and E. Evans, Annu. Rev. Biophys. Biomol. Struct.23, 787 (1994).

    CAS  Google Scholar 

  183. L. Scheffer, A. Bitler, E. Ben-Jacob, and F. Korenstein, Eur. Biophys. J.30, 83 (2001).

    CAS  Google Scholar 

  184. G. Lenormand, S. Hénon, A. Richert, J. Siméon, and F. Gallet, Biophys. J.81, 43 (2001).

    CAS  Google Scholar 

  185. D. E. Discher, D. H. Boal, and S. K. Boey, Biophys. J.75, 1584 (1998).

    CAS  Google Scholar 

  186. G. Lim, M. Wortis, and R. Mukhopadhyay, Proc. Natl. Acad. Sci. USA99, 16766 (2002).

    Google Scholar 

  187. H. Noguchi and G. Gompper, Proc. Natl. Acad. Sci. USA102, 14159 (2005).

    CAS  Google Scholar 

  188. H. Noguchi and G. Gompper, J. Chem. Phys.125, 164908 (2006).

    Google Scholar 

  189. M. M. Dupin, I. Halliday, C. M. Care, L. Alboul, and L. L. Munn, Phys. Rev. E75, 066707 (2007).

    Google Scholar 

  190. K. H. de Haas, C. Blom, D. van den Ende, M. H. G. Duits, and J. Mellema, Phys. Rev. E56, 7132 (1997).

    Google Scholar 

  191. V. Kantsler and V. Steinberg, Phys. Rev. Lett.95, 258101 (2005).

    Google Scholar 

  192. V. Kantsler and V. Steinberg, Phys. Rev. Lett.96, 036001 (2006).

    Google Scholar 

  193. M. A. Mader, V. Vitkova, M. Abkarian, A. Viallat, and T. Podgorski, Eur. Phys. J. E19, 389 (2006).

    CAS  Google Scholar 

  194. S. R. Keller and R. Skalak, J. Fluid Mech.120, 27 (1982).

    Google Scholar 

  195. T. W. Secomb and R. Skalak, Q. J. Mech. Appl. Math.35, 233 (1982).

    Google Scholar 

  196. T. W. Secomb, T. M. Fischer, and R. Skalak, Biorheology20, 283 (1983).

    CAS  Google Scholar 

  197. R. Tran-Son-Tay, S. P. Sutera, and P. R. Rao, Biophys. J.46, 65 (1984).

    CAS  Google Scholar 

  198. U. Seifert, Eur. Phys. J. B8, 405 (1999).

    CAS  Google Scholar 

  199. C. Misbah, Phys. Rev. Lett.96, 028104 (2006).

    Google Scholar 

  200. G. Danker, T. Biben, T. Podgorski, C. Verdier, and C. Misbah, Phys. Rev. E76, 041905 (2007).

    Google Scholar 

  201. V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, Phys. Rev. Lett.99, 218101 (2007).

    CAS  Google Scholar 

  202. M. Kraus, W. Wintz, U. Seifert, and R. Lipowsky, Phys. Rev. Lett.77, 3685 (1996).

    CAS  Google Scholar 

  203. J. Beaucourt, F. Rioual, T. Séon, T. Biben, and C. Misbah, Phys. Rev. E69, 011906 (2004).

    CAS  Google Scholar 

  204. T. Biben, K. Kassner, and C. Misbah, Phys. Rev. E72, 041921 (2005).

    Google Scholar 

  205. H. Noguchi and G. Gompper, Phys. Rev. Lett.98, 128103 (2007).

    Google Scholar 

  206. F. Brochard and J. F. Lennon, J. Phys. France36, 1035 (1975).

    Google Scholar 

  207. J. Rudnick and G. Gaspari, J. Phys. A19, L191 (1986).

    Google Scholar 

  208. G. B. Nash and H. J. Meiselman, Biophys. J.43, 63 (1983).

    CAS  Google Scholar 

  209. K. Tsukada, E. Sekizuka, C. Oshio, and H. Minamitani, Microvasc. Res.61, 231 (2001).

    CAS  Google Scholar 

  210. B. M. Discher, Y.-Y. Won, D. S. Ege, J. C.-M. Lee, F. S. Bates, D. E. Discher, and D. A. Hammer, Science284, 1143 (1999).

    CAS  Google Scholar 

  211. R. Dimova, U. Seifert, B. Pouligny, S. Förster, and H.-G. Döbereiner, Eur. Phys. J. E 7, 241 (2002).

    CAS  Google Scholar 

  212. H. Noguchi and G. Gompper, J. Phys.: Condens. Matter17, S3439 (2005).

    CAS  Google Scholar 

  213. R. Finken, A. Lamura, U. Seifert, and G. Gompper, Eur. Phys. J. E25, 309 (2008).

    CAS  Google Scholar 

  214. T. W. Secomb, R. Skalak, N. ö zkaya, and J. F. Gross, J. Fluid Mech.163, 405 (1986).

    Google Scholar 

  215. R. Skalak, Biorheology27, 277 (1990).

    CAS  Google Scholar 

  216. R. Bruinsma, Physica A234, 249 (1996).

    Google Scholar 

  217. C. Quéguiner and D. Barthés-Biesel, J. Fluid Mech.348, 349 (1997).

    Google Scholar 

  218. C. Pozrikidis, Phys. Fluids17, 031503 (2005).

    Google Scholar 

  219. C. Pozrikidis, Ann. Biomed. Eng.33, 165 (2005).

    CAS  Google Scholar 

  220. R. Skalak, Science164, 717 (1969).

    CAS  Google Scholar 

  221. S. Chien, Ann. Rev. Physiol.49, 177 (1987).

    CAS  Google Scholar 

  222. Y. Suzuki, N. Tateishi, M. Soutani, and N. Maeda, Microcirc.3, 49 (1996).

    CAS  Google Scholar 

  223. K. Boryczko, W. Dzwinel, and D. A. Yuen, J. Mol. Modeling9, 16 (2003).

    Google Scholar 

  224. W. Dzwinel, K. Boryczko, and D. A. Yuen, J. Colloid Int. Sci.258, 163 (2003).

    CAS  Google Scholar 

  225. C. D. Eggleton and A. S. Popel, Phys. Fluids10, 1834 (1998).

    CAS  Google Scholar 

  226. Y. Liu and W. K. Liu, J. Comput. Phys.220, 139 (2006).

    Google Scholar 

  227. H. Tanaka, J. Phys.: Condens. Matter12, R207 (2000).

    CAS  Google Scholar 

  228. J. Vermant and M. J. Solomon, J. Phys.: Condens. Matter17, R187 (2005).

    CAS  Google Scholar 

  229. Y.-G. Tao, I. O. Götze, and G. Gompper, J. Chem. Phys.128, 144902 (2008).

    Google Scholar 

  230. R. B. Bird, C. F. Curtis, R. C. Armstrong, and O. Hassager,Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory (Wiley, New York, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Gompper , T. Ihle , D. M. Kroll or R. G. Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gompper, G., Ihle, T., Kroll, D.M., Winkler, R.G. (2009). Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids. In: Holm, C., Kremer, K. (eds) Advanced Computer Simulation Approaches for Soft Matter Sciences III. Advances in Polymer Science, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87706-6_1

Download citation

Publish with us

Policies and ethics