Skip to main content

A Study of Convergence Speed in Multi-objective Metaheuristics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5199))

Abstract

An open issue in multi-objective optimization is designing metaheuristics that reach the Pareto front using a low number of function evaluations. In this paper, we adopt a benchmark composed of three well-known problem families (ZDT, DTLZ, and WFG) and analyze the behavior of six state-of-the-art multi-objective metaheuristics, namely, NSGA-II, SPEA2, PAES, OMOPSO, AbYSS, and MOCell, according to their convergence speed, i.e., the number of evaluations required to obtain an accurate Pareto front. By using the hypervolume as a quality indicator, we measure the algorithms converging faster, as well as their hit rate over 100 independent runs. Our study reveals that modern multi-objective metaheuristics such as MOCell, OMOPSO, and AbYSS provide the best overall performance, while NSGA-II and MOCell achieve the best hit rates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)

    Article  Google Scholar 

  2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  3. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  5. Durillo, J.J., Nebro, A.J., Luna, F., Dorronsoro, B., Alba, E.: jMetal: a java framework for developing multi-objective optimization metaheuristics. Technical Report ITI-2006-10, Dpto. de Lenguajes y Ciencias de la Computación, University of Málaga (2006)

    Google Scholar 

  6. Eskandari, H., Geiger, C.D., Lamont, G.B.: FastPGA: A dynamic population sizing approach for solving expensive multiobjective optimization problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 141–155. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Glover, F., Kochenberger, G.A.: Handbook of Metaheuristics. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  8. Hernández-Díaz, A.G., Santana-Quintero, L.V., Coello Coello, C., Caballero, R., Molina, J.: A New Proposal for Multi-Objective Optimization using Differential Evolution and Rough Sets Theory. In: Keijzer, M., et al. (eds.) Genetic and Evolutionary Computation Conference (GECCO 2006), pp. 675–682 (2006)

    Google Scholar 

  9. Huband, S., Hingston, P., Barone, L., While, L.: A Review of Multiobjective Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary Computation 10(5), 477–506 (2006)

    Article  Google Scholar 

  10. Knowles, J.: ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation 10(1), 50–66 (2006)

    Article  Google Scholar 

  11. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006)

    Google Scholar 

  12. Knowles, J.D., Corne, D.W.: The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Multiobjective Optimisation. In: Congress on Evolutionary Computation, pp. 98–105 (1999)

    Google Scholar 

  13. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: A cellular genetic algorithm for multiobjective optimization. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2006), pp. 25–36 (2006)

    Google Scholar 

  14. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: Design issues in a multiobjective cellular genetic algorithm. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 126–140. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS: Adapting scatter search to multiobjective optimization. IEEE Transactions on Evolutionary Computation (to appear, 2008)

    Google Scholar 

  16. Reyes Sierra, M., Coello Coello, C.A.: Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ε-Dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Santana-Quintero, L.V., Ramírez-Santiago, N., Coello Coello, C.A., Molina Luque, J., García Hernández-Díaz, A.: A New Proposal for Multiobjective Optimization Using Particle Swarm Optimization and Rough Sets Theory. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN IX 2006. LNCS, vol. 4193, pp. 483–492. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Toscano-Pulido, G., Coello Coello, C.A., Santana-Quintero, L.V.: EMOPSO: A Multi-Objective Particle Swarm Optimizer with Emphasis on Efficiency. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 272–285. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  20. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: EUROGEN 2001, pp. 95–100 (2002)

    Google Scholar 

  21. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nebro, A.J., Durillo, J.J., Coello Coello, C.A., Luna, F., Alba, E. (2008). A Study of Convergence Speed in Multi-objective Metaheuristics. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics