Skip to main content

Defence Responses in Plants

  • Chapter
Plant Relationships

Part of the book series: The Mycota ((MYCOTA,volume 5))

  • 3048 Accesses

Abstract

In nature, plants are exposed to a wide range of adverse stimuli throughout their life cycle. These comprise abiotic stresses such as cold, salinity and drought, as well as biotic stresses including animal herbivory and microbial colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two irtal- ics gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 95:10306-10311

    Article  PubMed  CAS  Google Scholar 

  • Abramovitch RB, Martin GB (2004) Strategies used by bacterial pathogens to suppress plant defenses. Curr Opin Plant Biol 7:356-364

    Article  PubMed  CAS  Google Scholar 

  • AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T (2006) Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J 48:28-44

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN (2004) The ethylene signaling pathway. Science 306:1513-1515

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773-784

    Article  PubMed  CAS  Google Scholar 

  • Amano M, Toyoda K, Ichinose Y, Yamada T, Shiraishi T (1997) Association between ion fluxes and defense responses in pea and cowpea tissues. Plant Cell Phys- iol 38:698-706

    CAS  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jjasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460-3479

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977-983

    Article  PubMed  CAS  Google Scholar 

  • Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 15:5118-5129

    Article  PubMed  CAS  Google Scholar 

  • Atkinson MM, Keppler LD, Orlandi EW, Baker CJ, Mischke CF (1990) Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco. Plant Physiol 92:215221

    Article  Google Scholar 

  • Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the Avr- Rpt2-directed

    Google Scholar 

  • elimination of RIN4. Cell 112:369-377

    Google Scholar 

  • Bartsch M, Gobbato E, Bednarek P, Debey S, Schultze JL, Bautor J, Parker JE (2006) Salicylic acid-independent ENHANCED

    Google Scholar 

  • DISEASE SUSCEPTIBILITY 1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the

    Google Scholar 

  • Nudix hydrolase NUDT7. Plant Cell 18:1038-1051

    Google Scholar 

  • Beckers GJM, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol 8:1-10

    Article  PubMed  CAS  Google Scholar 

  • Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Pan- struga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci USA 102:3135-3140

    Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line Between cost and benefit. Annu Rev Phytopathol 43:545-580

    Article  PubMed  CAS  Google Scholar 

  • Bouarab K, Melton R, Peart J, Baulcombe D, Osbourn A (2002) A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418:889-892

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Delaure SL, De Bolle MFC, Cammue BPA (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393-416

    Article  PubMed  CAS  Google Scholar 

  • Brown JKM, Simpson CG, Wolfe MS (1993) Adaptation of barley powdery mildew populations in England to varieties with 2 resistance genes. Plant Pathol 42:108115

    Article  Google Scholar 

  • Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, Dinesh-Kumar SP (2007) A novel role for the TIR domain in association

    Google Scholar 

  • with pathogen-derived elici- tors. PLoS Biology 5:501-514

    Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze- Lefert P (1997) The barley Mlo gene: A novel control element of plant pathogen resistance. Cell 88:695-705

    Article  PubMed  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong XN (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired-resistance. Plant Cell 6:1583-1592

    Article  PubMed  CAS  Google Scholar 

  • Catanzariti AM, Dodds PN, Lawrence GJ, Ayliffe MA, Ellis JG (2006) Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elici- tors. Plant Cell 18:243-256

    Article  PubMed  CAS  Google Scholar 

  • Chandra-Shekara AC, Navarre D, Kachroo A, Kang H-G, Klessig D, Kachroo P (2004) Signaling requirements and role of salicylic acid in HRT- and rri-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J 40:647-659

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-F, Etheridge N, Schaller GE (2005a) Ethylene signal transduction. Ann Bot 95:901-915

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Hong X, Zhang H, Wang Y, Li X, Zhu J-K, Gong Z (2005b) Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J 43:273-283

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22

    Google Scholar 

  • and determines the specificity of flagellin perception. Plant Cell 18:465-476

    Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host- microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814

    Article  PubMed  CAS  Google Scholar 

  • Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol 314-325

    Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kom- brink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973-977

    Google Scholar 

  • da Cunha L, McFall AJ, Mackey D (2006) Innate immunity in plants: a continuum of layered defenses. Microbes Infect 8:1372-1381 Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826-833

    Google Scholar 

  • Delessert C, Kazan K, Wilson IW, van der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogene- sis-related genes in Arabidopsis. Plant J 43:745-757

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585-588 Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579-1587

    Google Scholar 

  • Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich L, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024-8029

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Turner JG (2005) Jasmonate-regulated Arabidopsis stress signalling network. Physiol Plant 123:161172

    Article  CAS  Google Scholar 

  • Devoto A, Nieto-Rostro M, Xie DX, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG

    Google Scholar 

  • COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457-466

    Google Scholar 

  • Dodds PN, Lawrence GJ, Catanzariti A-M, Ayliffe MA, Ellis JG (2004) The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell 16:755768

    Article  CAS  Google Scholar 

  • Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CIA, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103:88888893

    Article  CAS  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21-37

    Article  PubMed  CAS  Google Scholar 

  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547-552

    Article  PubMed  CAS  Google Scholar 

  • Douchkov D, Nowara D, Zierold U, Schweizer P (2005) A high- throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol Plant-Microbe Interact 18:755-761

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2:369-374

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:1032810333

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185-209

    Article  PubMed  CAS  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cevl links cell wall signaling to jjasmonate and

    Google Scholar 

  • ethylene responses. Plant Cell 14:15571566

    Google Scholar 

  • Eulgem T (2006) Dissecting the WRKY web of plant defense

    Google Scholar 

  • regulators. Plos Pathogen 2:1028-1030

    Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265-276

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Herrmann A, Hanstein S, Hückelhoven R, Kogel K-H (2004) Apoplastic pH signaling in barley leaves attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei. Mol Plant-Microbe Interact 17:118-123

    Article  PubMed  CAS  Google Scholar 

  • Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen ZJ, Batista LM, Duarte J, Borges A, Teixeira AR (2006) Fungal pathogens: the battle for plant infection. Crit Rev Plant Sci 25:505-524

    Article  CAS  Google Scholar 

  • Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen ZJ, Batista LM, Duarte J, Borges A, Teixeira AR (2007) The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol 8:677-700

    Article  PubMed  CAS  Google Scholar 

  • Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Ara- bidopsis mutants selected for resistance to the phyto- toxin coronatine are male sterile, insensitive to methyl jjasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751-759

    Article  PubMed  CAS  Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400-5411

    Article  PubMed  CAS  Google Scholar 

  • Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE (2005) Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTI- BILITY1 complex in plant innate immunity. Plant Cell 17:2601-2613

    Article  PubMed  CAS  Google Scholar 

  • Flor HH (1971) Current status of gene-for-gene concept. Annu Rev Phytopathol 9:275-296

    Article  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98:373-378

    Article  PubMed  CAS  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117-1126

    Article  PubMed  CAS  Google Scholar 

  • Glawischnig E, Hansen BG, Olsen CE, Halkier BA (2004) Camalexin is synthesized from indole-3-acetaidox- ime, a key branching point between primary and secondary metabolism in Arabidopsis. Proc Natl Acad Sci USA 101:8245-8250

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205-227

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Ausubel FM (1994) Isolation of phytoalexin- deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc Natl Acad Sci USA 91:8955-8959

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R, Ausubel FM (1997) Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146: 381-392

    PubMed  CAS  Google Scholar 

  • Glazebrook J, Chen WJ, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression pheno- typing. Plant J 34:217-228

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: An LRR receptorlike kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003-1011

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Gomez L, Bauer Z, Boller T (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13:1155-1163

    Article  PubMed  CAS  Google Scholar 

  • Grant M, Lamb C (2006) Systemic immunity. Curr Opin Plant Biol 9:414-420

    Article  PubMed  CAS  Google Scholar 

  • Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Micro- biol 60:425-449

    Article  CAS  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40-49

    Article  PubMed  CAS  Google Scholar 

  • Halterman D, Zhou F, Wei F, Wise RP, Schulze-Lefert P (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J 25: 335-48

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotech- nol 14:177-193

    Article  CAS  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:10991103

    Article  CAS  Google Scholar 

  • He YH, Gan SS (2002) A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell 14:805-815

    Article  PubMed  CAS  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315-319

    Article  PubMed  CAS  Google Scholar 

  • Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, Lee KJ, Park CY, Park HC, Choi JY, Cho MJ (1999) Involvement of specific calmodulin isoforms in salicylic acid- independent activation of plant disease resistance responses. Proc Natl Acad Sci USA 96:766-771

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Blanco C, Feng DX, Hu J, Sanchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo M, Keller H, Barlet X, Sanchez-Rodriguez C, Anderson LK, Somer- ville S, Marco Y, Molina A (2007) Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19:890-903

    Google Scholar 

  • Holub EB, Cooper A (2004) Matrix, reinvention in plants: how genetics is unveiling secrets of non-host disease resistance. Trends Plant Sci 9:211-214

    Article  PubMed  CAS  Google Scholar 

  • Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush GS (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313-320

    Article  CAS  Google Scholar 

  • Hückelhoven R, Kogel K (2003) Reactive oxygen intermediates in plant-microbe interactions: who is who in powdery mildew resistance? Planta 216:891-902

    PubMed  Google Scholar 

  • Ingle RA, Carstens M, Denby KJ (2006) PAMP recognition and the plant-pathogen arms race. BioEssays 28:880889

    Article  CAS  Google Scholar 

  • Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O -2 from the oxi- dative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci USA 94:4800-4805

    Article  PubMed  CAS  Google Scholar 

  • Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15:2503-2513

    Article  PubMed  CAS  Google Scholar 

  • Jensen M, Rung J, Gregersen P, Gjetting T, Fuglsang A, Hansen M, Joehnk N, Lyngkjaer M, Collinge D (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65:137-150

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004-4014

    Article  PubMed  CAS  Google Scholar 

  • Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415-424

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Takemoto D (2004) Plant innate immunity - direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 16:48-62

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323-329

    Article  PubMed  CAS  Google Scholar 

  • Kelly JD (1995) Use of random amplified polymorphic DNA markers in breeding for major gene resistance to plant pathogens. Hortscience 30:461-465

    Google Scholar 

  • Kim MC, Panstruga R, Elliott C, Müller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416:447-450

    Article  PubMed  CAS  Google Scholar 

  • Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant-Microbe Interact 20:120-128

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Take- moto T, Kunoh H (1997) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11:525-537

    Google Scholar 

  • Koh S, Somerville S (2006) Show and tell: cell biology of pathogen invasion. Curr Opin Plant Biol 9:406-413

    Article  PubMed  CAS  Google Scholar 

  • Koh S, Andre A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44:516-529

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu W-L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-acti- vated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940-2945

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323-328

    Article  PubMed  CAS  Google Scholar 

  • Lecourieux D, Raneva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171:249-269

    Article  PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319-331

    Article  PubMed  CAS  Google Scholar 

  • Li J, Brader G, Kariola T, Tapio Palva E (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477-491

    Article  PubMed  CAS  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921-930

    Article  PubMed  CAS  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180-1183

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532-540

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defence. Plant Cell 15:165-178

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) Jasmonate-insensitive 1 encodes a MYC transcription factor essential to discriminate between different jas- monate-regulated defense responses in Arabidopsis. Plant Cell 16:1938-1950Ludwig AA, Romeis T, Jones JDG (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181-188 Lyngkjaer MF, Carver TLW (1999) Induced accessibility and inaccessibility to Blumeria graminis f.sp. hordei in barley epidermal cells attacked by a compatible isolate. Physiol Mol Plant Pathol 55:151-162

    Google Scholar 

  • Mackey D, Holt BF, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743-754

    Article  PubMed  CAS  Google Scholar 

  • Maor R, Shirasu K (2005) The arms race continues: battle strategies between plants and fungal pathogens. Curr Opin Microbiol 8:399-404

    Article  PubMed  CAS  Google Scholar 

  • Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet M-F, Regad F, Cailleteau B, Hamdi S, Lauvergeat V (2007) Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in trans- genic tobacco plants. J Exp Bot 58:1999-2010

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432-1436

    Article  PubMed  CAS  Google Scholar 

  • Martin-Hernandez AM, Dufresne M, Hugouvieux V, Melton R, Osbourn A (2000) Effects of targeted replacement of the tomatinase gene on the interaction of Septoria lycopersici with tomato plants. Mol Plant-Microbe Interact 13:1301-1311

    Article  PubMed  CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409-414

    Article  PubMed  CAS  Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15: 2551-2565

    Article  PubMed  CAS  Google Scholar 

  • Menke FLH, van Pelt JA, Pieterse CMJ, Klessig DF (2004) Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis. Plant Cell 16:897-907

    Article  PubMed  CAS  Google Scholar 

  • Micali C, Göllner K, Humphry M, Consonni C, Panstruga R (2008) The powdery mildew disease of Arabidopsis: A paradigm for the interaction between plants and bio- trophic fungi. The Arabidopsis Book Rockville, MD: American Society of Plant Biologists. doi: 10.1199/ tab.0115, http://www.aspb.org/publications/arabidopsis/

    Google Scholar 

  • Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R (2007) Barley MLO modulates actin- dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol 144:11321143

    Article  CAS  Google Scholar 

  • Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50:500-513

    Article  PubMed  CAS  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461-469

    Article  CAS  Google Scholar 

  • Mou Z, Fan WH, Dong XN (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935-944

    Article  PubMed  CAS  Google Scholar 

  • Nawrath C, Metraux JP (1999) Salicylic acid induction- deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell 11:1393-1404

    Article  PubMed  CAS  Google Scholar 

  • Nawrath C, Heck S, Parinthawong N, Metraux JP (2002) EDS5, an essential component of salicylic acid- dependent signaling for disease resistance in Arabi- dopsis, is a member of the MATE transporter family. Plant Cell 14:275-286

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237-1247

    Article  PubMed  CAS  Google Scholar 

  • Nicholson RL, Kollipara SS, Vincent JR, Lyons PC, Cadena- Gomez G (1987) Phytoalexin synthesis by the Sorghum mesocotyl in response to infection by pathogenic and nonpathogenic fungi. Proc Natl Acad Sci USA 84:5520-5524

    Article  PubMed  CAS  Google Scholar 

  • Nicholson RL, Jamil FF, Snyder BA, Lue WL, Hipskind J (1988) Phytoalexin synthesis in the juvenile sorghum leaf. Physiol Mol Plant Pathol 33:271-278

    Article  CAS  Google Scholar 

  • Nickstadt A, Thomma BPHJ, Feussner I, Kangasjarvi J, Zeier J, Loeffler C, Scheel D, Berger S (2004) The jasmonate- insensitive mutant jinl shows increased resistance to biotrophic as well as necrotrophic pathogens. Mol Plant Pathol 5:425-434

    Article  PubMed  CAS  Google Scholar 

  • Nimchuk Z, Eulgem T, Holt Iii BF, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579-609

    Article  PubMed  CAS  Google Scholar 

  • Nishimura MT, Stein M, Hou B-H, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301:969-972

    Article  PubMed  CAS  Google Scholar 

  • Nürnberger T, Brunner F (2002) Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biology 5: 318-324

    Article  Google Scholar 

  • Nürnberger T, Lipka V (2005) Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol 6:335-345

    Article  PubMed  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249-266

    Article  PubMed  Google Scholar 

  • O'Connell RJ, Panstruga R (2006) Tête à tête inside a plant cell: establishing compatibility between plants and bio- trophic fungi and oomycetes. New Phytol 171:699-718

    Article  PubMed  CAS  Google Scholar 

  • Olszak B, Malinovsky FG, Brodersen P, Grell M, Giese H, Petersen M, Mundy J (2006) A putative flavin-containing mono-oxygenase as a marker for certain defense and cell death pathways. Plant Sci 170:614-623

    Article  CAS  Google Scholar 

  • Papadopoulou K, Melton RE, Legett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci USA 96:12923-12928

    Article  PubMed  CAS  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157-1168

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis MAP Kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111-1120

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, van Loon LC (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7:456-464

    Article  PubMed  CAS  Google Scholar 

  • Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P (2002) The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol 129:1076-1085

    Article  PubMed  CAS  Google Scholar 

  • Prats E, Mur LAJ, Sanderson R, Carver TLW (2005) Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp hordei. Mol Plant Pathol 6:65-78

    Article  PubMed  CAS  Google Scholar 

  • Ridout CJ, Skamnioti P, Porritt O, Sacristan S, Jones JDG, Brown JKM (2006) Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 18:2402-2414

    Article  PubMed  CAS  Google Scholar 

  • Rivas S, Thomas CM (2002) Recent advances in the study of tomato Cf resistance genes. Mol Plant Pathol 3:277-282

    Article  PubMed  CAS  Google Scholar 

  • Robatzek S (2007) Vesicle trafficking in plant immune responses. Cell Microbiol 9:1-8

    Article  PubMed  CAS  Google Scholar 

  • Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537-542

    Article  PubMed  CAS  Google Scholar 

  • Rom eis T (2001) Protein kinases in the plant defence response. Curr Opin Plant Biol 4:407-414

    Google Scholar 

  • Romeis T, Ludwig AA, Martin R, Jones JDG (2001) Calcium- dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556-5567

    Article  PubMed  CAS  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elici- tor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604-1615

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15: 5690-5700

    PubMed  CAS  Google Scholar 

  • Salmeron JM, Oldroyd GED, Rommens CMT, Scofield SR, Kim H, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prfis a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123-133

    Article  PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Assaad FF, Raikhel NV (2000) The Arabidopsis genome. An abundance of soluble N-ethyl- maleimide-sensitive factor adaptor protein receptors. Plant Physiol 124:1558-1569

    CAS  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop - a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430-434

    Article  PubMed  Google Scholar 

  • Schiff CL, Wilson IW, Somerville SC (2001) Polygenic powdery mildew disease resistance in Arabidopsis thaliana: quantitative trait analysis of the accession Warschau-1. Plant Pathol 50:690-701

    Article  CAS  Google Scholar 

  • Schmelzer E (2002) Cell polarization, a crucial process in fungal defence. Trends Plant Sci 7:411-415

    Article  PubMed  CAS  Google Scholar 

  • Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E (2006) CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol 141:1248-1254

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Lefert P (2004) Knocking on heaven's wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Curr Opin Plant Biol 7:377-383

    Article  PubMed  CAS  Google Scholar 

  • Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274:2063-2065

    Article  PubMed  CAS  Google Scholar 

  • Shan XC, Goodwin PH (2005) Reorganization of filamentous actin in Nicotiana benthamiana leaf epidermal cells inoculated with Colletotrichum destructivum and Colletotrichum graminicola. Int J Plant Sci 166:31-39

    Article  Google Scholar 

  • Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links iso- late-specific and basal disease-resistance responses. Science 315:1098-1103

    Article  PubMed  CAS  Google Scholar 

  • Shimada C, Lipka V, O'Connel R, Okuno T, Schulze-Lefert P, Takano Y (2006) Nonhost resistance in Arabi- dopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant-Microbe Interact 19:270-279

    Article  PubMed  CAS  Google Scholar 

  • Snyder BA, Nicholson RL (1990) Synthesis of phytoalex- ins in Sorghum as a site-specific response to fungal ingress. Science 248:1637-1639

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Sci- ence270:1804-1806

    CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, van Loon LC, Dong XN, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760-770

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Su WP, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89:6837-6840

    Article  PubMed  CAS  Google Scholar 

  • Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731-746

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Hardham AR (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136:3864-3876

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J 33:775-792

    Article  PubMed  CAS  Google Scholar 

  • Tang DZ, Christiansen KM, Innes RW (2005) Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol 138:1018-1026

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Xie ZY, Chen WQ, Glazebrook J, Chang HS, Han B, Zhu T, Zou GZ, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317-330

    Google Scholar 

  • Thomas CM, Jones DA, Parniske M, Harrison K, Balint- Kurti PJ, Hatzixanthis K, Jones J (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:2209-2224

    Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch- Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate- dependent defense-response pathways in Arabidopsis are essential for resistance to distinct

    Google Scholar 

  • microbial pathogens. Proc Natl Acad Sci USA 95:15107-15111

    Google Scholar 

  • Thomma BPHJ, Eggermont K, Tierens KFMJ, Broekaert WF (1999a) Requirement of functional Ethylene- Insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121:1093-1101

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Nelissen I, Eggermont K, Broekaert WF (1999b) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19:163-171

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91(phox) homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517-522

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130-1134

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373-378

    Article  PubMed  CAS  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491-498

    Article  PubMed  CAS  Google Scholar 

  • van Baarlen P, Woltering EJ, Staats M, van Kan JAL (2007) Histochemical and genetic analysis of host and nonhost interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol Plant Pathol 8:41-54

    Article  Google Scholar 

  • van der Biezen EA, Jones JDG (1998) Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci 23:454-456

    Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135-162

    Google Scholar 

  • Vorwerk S, Somerville SC, Somerville CR (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9:203-209

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Weaver ND, Kesarwani M,, Dong XN (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036-1040

    Article  PubMed  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449-455

    Article  PubMed  CAS  Google Scholar 

  • Wiermer M, Feys BJ, Parker JE (2005) Plant immunity: the EDS1 regulatory node. Curr Opin Plant Biol 8:383-389

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Iso- chorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562-565

    Article  PubMed  CAS  Google Scholar 

  • Wilson IW, Schiff CL, Hughes DE, Somerville SC (2001) Quantitative trait loci analysis of powdery mildew disease resistance in the Arabidopsis thaliana accession Kashmir-1. Genetics 158:1301-1309

    PubMed  CAS  Google Scholar 

  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118-120

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310-1326

    Article  PubMed  CAS  Google Scholar 

  • Yang K-Y, Liu Y, Zhang S (2001) Activation of a mitogen- activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 98:741-746

    Article  PubMed  CAS  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479501

    Article  Google Scholar 

  • Yun BW, Atkinson HA, Gaborit C, Greenland A, Read ND, Pallas JA, Loake GJ (2003) Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J 34:768-777

    Article  PubMed  CAS  Google Scholar 

  • Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Ara- bidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811-15816

    Article  PubMed  CAS  Google Scholar 

  • Zhou N, Tootle TL, Glazebrook J (1999) Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 11:2419-2428

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764-767

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacte- rium-mediated transformation. Cell 125:749-760

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Consonni, C., Humphry, M., Panstruga, R. (2009). Defence Responses in Plants. In: Deising, H.B. (eds) Plant Relationships. The Mycota, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87407-2_18

Download citation

Publish with us

Policies and ethics