Skip to main content

Photonic Reservoir Computing with Coupled Semiconductor Optical Amplifiers

  • Conference paper
  • 739 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5172))

Abstract

We propose photonic reservoir computing as a new approach to optical signal processing and it can be used to handle for example large scale pattern recognition. Reservoir computing is a new learning method from the field of machine learning. This has already led to impressive results in software but integrated photonics with its large bandwidth and fast nonlinear effects would be a high-performance hardware platform. Therefore we developed a simulation model which employs a network of coupled Semiconductor Optical Amplifiers (SOA) as a reservoir. We show that this kind of photonic reservoir performs even better than classical reservoirs on a benchmark classification task.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004)

    Article  Google Scholar 

  2. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computing 14, 2531–2560 (2002)

    Article  MATH  Google Scholar 

  3. Maass, W., Natschläger, T., Markram, H.: A model for real-time computation in generic neural microcircuits. In: Proceedings of NIPS, pp. 229–236. MIT Press, Vancouver (2003)

    Google Scholar 

  4. Skowronski, M.D., Harris, J.G.: Minimum mean squared error time series classification using an echo state network prediction model. In: Proceedings of IEEE International symposium on circuits and systems. Institute of Electrical and Electronics Engineers, Island of Kos (2006)

    Google Scholar 

  5. Verstraeten, D., Schrauwen, B., Stroobandt, D., Van Campenhout, J.: Isolated word recognition with the Liquid State Machine: a case study. Information Processing Lett. 95, 521–528 (2005)

    Article  Google Scholar 

  6. Jaeger, H.: Reservoir riddles: Suggestions for echo state network research (extended abstract). In: Proceedings of IEEE International Joint Conference on Neural Networks, pp. 1460–1462. Institute of Electrical and Electronics Engineers, Montreal (2005)

    Chapter  Google Scholar 

  7. Joshi, P., Maass, W.: Movement generation and control with generic neural micrrocircuits. In: Proceedings of BIO-ADIT, pp. 16–31. Springer, Berlin (2004)

    Google Scholar 

  8. Steil, J.J.: Online stability of backpropagation-decorrelation recurrent learning. Neurocomputing 69, 642–650 (2006)

    Article  Google Scholar 

  9. Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)

    Google Scholar 

  10. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Networks 10, 988–999 (1999)

    Article  Google Scholar 

  11. Legenstein, R., Maass, W.: What makes a dynamical system computationally powerful? In: New directions in statistical signal processing: from systems to brain, pp. 127–154. MIT Press, Cambridge (2007)

    Google Scholar 

  12. Reservoir lab: Reservoir Computing Toolbox, http://snn.elis.ugent.be/node/59

  13. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Networks 20, 391–403 (2007)

    Article  MATH  Google Scholar 

  14. Agrawal, G.P., Olsson, N.A.: Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor-Laser Amplifiers. IEEE J. Quantum Electron. 25, 2297–2306 (1989)

    Article  Google Scholar 

  15. Cernansky, M., Makula, M.: Feed-forward echo state networks. In: Proceedings of IEEE International Joint Conference on Neural Networks, pp. 1479–1482. Institute of Electrical and Electronics Engineers, Montreal (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vandoorne, K. et al. (2008). Photonic Reservoir Computing with Coupled Semiconductor Optical Amplifiers. In: Dolev, S., Haist, T., Oltean, M. (eds) Optical SuperComputing. OSC 2008. Lecture Notes in Computer Science, vol 5172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85673-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85673-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85672-6

  • Online ISBN: 978-3-540-85673-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics