Skip to main content

Sinorhizobium meliloti Megaplasmids and Symbiosis in S. meliloti

  • Chapter
Microbial Megaplasmids

Part of the book series: Microbiology Monographs ((MICROMONO,volume 11))

  • 1245 Accesses

Abstract

Sinorhizobium meliloti is a Gram-negative soil bacterium forming a symbiotic nitrogen-fixing relationship with legumes such as Medicago sativa. All strains analyzed so far contain three replicons: one chromosome and two inherently stable megaplasmids, the maintenance of which is not only due to their contribution to the cell viability but also to enhancement of the competitiveness of the cells in their natural environment. pSymB contains both plasmid and chromosomal features and is designed as a second chromosome, whereas pSymA is considered as an symbiotic accessory megaplasmid, as it can be cured without affecting S. meliloti viability. S. meliloti genome architecture was shown to be highly dynamic, as the three replicons continuously cointegrate and excise. Many of the genes identified on pSymA and pSymB in S. meliloti are involved in the formation and functioning of nitrogen-fixing root nodules. Genes located on pSymA are necessary for nodulation and nitrogen fixation, while those located on pSymB are involved in exopolysaccharide synthesis and uptake of various nutrients. Functional analyses of the genome have contributed to our understanding of the influence of the megaplasmids on S. meliloti's metabolic and symbiotic abilities as well as of its successful occupation of natural niches, soil survival, plant colonization, and atmospheric dinitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  • Aguilar OM, Kapp D, Pühler A (1985) Characterization of a Rhizobium meliloti fixation gene (fixF) located near the common nodulation region. J Bacteriol 164:245–254

    CAS  PubMed  Google Scholar 

  • Ashelford KE, Day MJ, Fry JC (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 69:285–289.

    CAS  PubMed  Google Scholar 

  • Baev N, Endre G, Petrovics G, Banfalvi Z, Kondorosi A (1991) Six nodulation genes of nod box locus 4 in Rhizobium meliloti are involved in nodulation signal production: nodM codes for d-glucosamine synthetase. Mol Gen Genet 228:113–124

    CAS  PubMed  Google Scholar 

  • Baev N, Schultze M, Barlier I, Ha DC, Virelizier H, Kondorosi E, Kondorosi A. (1992) Rhizobium nodM and nodN genes are common nod genes: nodM encodes functions for efficiency of nod signal production and bacteroid maturation. J Bacteriol 174:7555–7565

    CAS  PubMed  Google Scholar 

  • Banfalvi Z, Sakanyan V, Koncz C, Kiss A, Dusha I, Kondorosi A (1981) Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R meliloti. Mol Gen Genet 184:318–325

    CAS  PubMed  Google Scholar 

  • Bardin S, Dan S, Osteras M, Finan TM (1996) A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti. J Bacteriol 178:4540–4547

    CAS  PubMed  Google Scholar 

  • Barnett MJ, Hung DY, Reisenauer A, Shapiro L, Long SR (2001a) A homolog of the CtrA cell cycle regulator is present and essential in Sinorhizobium meliloti. J Bacteriol 183:3204–3210

    CAS  Google Scholar 

  • Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR (2001b) Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci USA 98:9883–9888

    CAS  Google Scholar 

  • Barnett MJ, Toman CJ, Fisher RF, Long SR (2004) A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc Natl Acad Sci USA 101:16636–16641

    CAS  PubMed  Google Scholar 

  • Bartosik D, Baj J, Wlodarczyk M (1998) Molecular and functional analysis of pTAV320, a repABC -type replicon of the Paracoccus versutus composite plasmid pTAV1. Microbiology 144:3149–3157

    CAS  PubMed  Google Scholar 

  • Batut J, Daveran-Mingot ML, David M, Jacobs J, Garnerone AM, Kahn D (1989) fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti EMBO J 8:1279–1286

    CAS  PubMed  Google Scholar 

  • Becker A, Kleickmann A, Keller M, Arnold W, Pühler A (1993a) Identification and analysis of the Rhizobium meliloti exoAMONP genes involved in exopolysaccharide biosynthesis and mapping of promoters located on the exoHKLAMONP fragment. Mol Gen Genet 241:367–379

    CAS  Google Scholar 

  • Becker A, Kleickmann A, Kuster H, Keller M, Arnold W, Pühler A (1993b) Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases. Mol Plant Microbe Interact 6:735–744

    CAS  Google Scholar 

  • Becker A, Rüberg S, Küster H, Roxlau AA, Keller M, Ivashina T, Cheng HP, Walker GC, Pühler A. (1997) The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products. J Bacteriol 179:1375–1384

    CAS  PubMed  Google Scholar 

  • Berges H, Checroun C, Guiral S, Garnerone AM, Boistard P, Batut J (2001) A glutamine-ami-dotransferase-like protein modulates FixT anti-kinase activity in Sinorhizobium meliloti BMC Microbiol 1:6

    CAS  PubMed  Google Scholar 

  • Bibb MJ, Biro S, Motamedi H, Collins JF, Hutchinson CR (1989) Analysis of the nucleotide sequence of the Streptomyces glaucescens tcmI genes provides key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J 8:2727–2736

    CAS  PubMed  Google Scholar 

  • Bignell C, Thomas CM (2001) The bacterial ParA-ParB partitioning proteins. J Biotechnol 91:1–34

    CAS  PubMed  Google Scholar 

  • Bobik C, Meilhoc E, Batut J (2006) FixJ: a major regulator of the oxygen limitation response and late symbiotic functions of Sinorhizobium meliloti J Bacteriol 188:4890–4902

    CAS  PubMed  Google Scholar 

  • Boivin C, Barran LR, Malpica CA, Rosenberg C (1991) Genetic analysis of a region of the Rhizobium melilotipSym plasmid specifying catabolism of trigonelline, a secondary metabolite present in legumes. J Bacteriol 173:2809–2817

    CAS  PubMed  Google Scholar 

  • Boucher C, Genin S, Arlat M (2001) Current concepts on the pathogenicity of phytopathogenic bacteria. C R Acad Sci III324:915–922.

    CAS  PubMed  Google Scholar 

  • Buendia AM, Enenkel B, Koplin R, Niehaus K, Arnold W, Pühler A (1991) The Rhizobium meliloti exoZl exoB fragment of megaplasmid 2: ExoB functions as a UDP-glucose 4-epime-rase and ExoZ shows homology to NodX of Rhizobium leguminosarum biovar viciae strain TOM. Mol Microbiol 5:1519–1530

    CAS  PubMed  Google Scholar 

  • Buikema WJ, Klingensmith JA, Gibbons SL, Ausubel FM (1987) Conservation of structure and location of Rhizobium meliloti and Klebsiella pneumoniae nifB genes. J Bacteriol 169:1120–1126

    CAS  PubMed  Google Scholar 

  • Canter Cremers HC, Batley M, Redmond JW, Eydems L, Breedveld MW, Zevehuizen LP, Pees E, Wijffelman CA, Lugtenberg BJ. (1990) Rhizobium leguminosarum exoB mutants are deficient in the synthesis of UDP-glucose 4¢-epimerase. J Biol Chem 265:21122–21127

    CAS  PubMed  Google Scholar 

  • Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Pühler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F (2001) Analysis of the chromosome sequence of the legume symbi-ont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98:9877–9882

    CAS  PubMed  Google Scholar 

  • Chain PS, Hernandez-Lucas I, Golding B, Finan TM (2000) oriT -directed cloning of defined large regions from bacterial genomes: identification of the Sinorhizobium meliloti pExo megaplas-mid replicator region. J Bacteriol 182:5486–5494

    CAS  PubMed  Google Scholar 

  • Chan YK, McCormick WA, Watson RJ (1997) A new nos gene downstream from nosDFY is essential for dissimilatory reduction of nitrous oxide by Rhizobium (Sinorhizobium) meliloti Microbiology 143:2817–2824

    CAS  PubMed  Google Scholar 

  • Chan YK, McCormick WA (2004) Experimental evidence for plasmid-borne nor-nir genes in Sinorhizobium meliloti JJ1c10. Can J Microbiol 50:657–667

    CAS  PubMed  Google Scholar 

  • Charles TC, Finan TM (1991) Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo. Genetics 127:5–20.

    CAS  PubMed  Google Scholar 

  • Charles TC, Cai GQ, Aneja P (1997) Megaplasmid and chromosomal loci for the PHB degradation pathway in Rhizobium (Sinorhizobium) meliloti Genetics 146:1211–1220

    CAS  PubMed  Google Scholar 

  • Chen H, Higgins J, Oresnik IJ, Hynes MF, Natera S, Djordjevic MA, Weinman JJ, Rolfe BG (2000) Proteome analysis demonstrates complex replicon and luteolin interactions in pSyma-cured derivatives of Sinorhizobium meliloti strain 2011. Electrophoresis 21:3833–3842.

    CAS  PubMed  Google Scholar 

  • Cheng J, Sibley CD, Zaheer R, Finan TM (2007) A Sinorhizobium meliloti minE mutant has an altered morphology and exhibits defects in legume symbiosis. Microbiology 153:375–387

    CAS  PubMed  Google Scholar 

  • Corbin D, Barran L, Ditta G (1983) Organization and expression of Rhizobium meliloti nitrogen fixation genes. Proc Natl Acad Sci USA 80:3005–3009

    CAS  PubMed  Google Scholar 

  • Cosseau C, Garnerone AM, Batut J (2002) The FixM flavoprotein modulates inhibition by AICAR or 5¢AMP of respiratory and nitrogen fixation gene expression in Sinorhizobium meliloti.Mol Plant Microbe Interact 15:598–607

    CAS  PubMed  Google Scholar 

  • David M, Daveran ML, Batut J, Dedieu A, Domergue O, Ghai J, Hertig C, Boistard P, Kahn D. (1988) Cascade regulation of nif gene expression in Rhizobium meliloti Cell 54:671–683

    CAS  Google Scholar 

  • Debelle F, Rosenberg C, Vasse J, Maillet F, Martinez E, Dénarié J, Truchet G. (1986) Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) genetic loci of Rhizobium meliloti J Bacteriol 168:1075–1086

    CAS  PubMed  Google Scholar 

  • Debelle F, Sharma SB (1986) Nucleotide sequence of Rhizobium meliloti RCR2011 genes involved in host specificity of nodulation. Nucleic Acids Res 14:7453–7472

    CAS  PubMed  Google Scholar 

  • Dehoux P, Cossart P (1995) Homologies between salmolysin and some bacterial regulatory proteins. Mol Microbiol 15:591

    CAS  PubMed  Google Scholar 

  • Demont N, Debelle F, Aurelle H, Dénarié J, Prome JC (1993) Role of the Rhizobium meliloti nodF and nodE genes in the biosynthesis of lipo-oligosaccharidic nodulation factors. J Biol Chem 268:20134–20142

    CAS  PubMed  Google Scholar 

  • Domínguez-Ferreras A, Pérez-Arnedo R, Becker A, Olivares J, Soto MJ, Sanjuán J (2006) Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti J Bacteriol 188:7617–7625

    PubMed  Google Scholar 

  • Downie JA, Young JP (2001) Genome sequencing. The ABC of symbiosis. Nature 412:597–598

    CAS  PubMed  Google Scholar 

  • Dusha I, Kovalenko S, Banfalvi Z, Kondorosi A. (1987) Rhizobium meliloti insertion element ISRm2 and its use for identification of the fixX gene. J Bacteriol 169:1403–1409.

    CAS  PubMed  Google Scholar 

  • Egelhoff TT, Fisher RF, Jacobs TW, Mulligan JT, Long SR (1985) Nucleotide sequence of Rhizobium meliloti 1021 nodulation genes: nodD is read divergently from nodABC. DNA 4:241–248

    CAS  PubMed  Google Scholar 

  • Engelke T, Jording D, Kapp D, Pühler A (1989) Identification and sequence analysis of the Rhizobium meliloti dctA gene encoding the C4-dicarboxylate carrier. J Bacteriol 171:5551–5560

    CAS  PubMed  Google Scholar 

  • Fernández-López M, Muñoz-Adelantado E, Gillis M, Willems A, Toro N (2005) Dispersal and Evolution of the Sinorhizobium meliloti Group II RmInt1 Intron in Bacteria that Interact with Plants. Mol Biol Evol 22:1518–1528.

    PubMed  Google Scholar 

  • Finan TM, Hirsch AM, Leigh JA, Johansen E, Kuldau GA, Deegan S, Walker GC, Signer ER. (1985) Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell40:869–877

    CAS  PubMed  Google Scholar 

  • Finan TM, Kunkel B, De Vos GF, Signer ER (1986) Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72

    CAS  PubMed  Google Scholar 

  • Finan TM (1988) Genetic and physical analyses of group E exo- mutants of Rhizobium meliloti J Bacteriol 170:474–477

    CAS  PubMed  Google Scholar 

  • Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorholter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Pülhler A (2001) The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci USA 98:9889–9894

    CAS  PubMed  Google Scholar 

  • Fisher RF, Egelhoff TT, Mulligan JT, Long SR (1988) Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodula-tion genes. Genes Dev 2:282–293

    CAS  PubMed  Google Scholar 

  • Fisher RF, Long SR (1989) DNA footprint analysis of the transcriptional activator proteins NodD1 and NodD3 on inducible nod gene promoters. J Bacteriol 171:5492–5502

    CAS  PubMed  Google Scholar 

  • Foussard M, Garnerone AM, Ni F, Soupene E, Boistard P, Batut J (1997) Negative autoregulation of the Rhizobium meliloti fixK gene is indirect and requires a newly identified regulator, FixT. Mol Microbiol 25:27–37

    CAS  PubMed  Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401

    CAS  PubMed  Google Scholar 

  • Gage DJ, Long SR (1998) alpha-Galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization. J Bacteriol 180:5739–5748

    CAS  PubMed  Google Scholar 

  • Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J. (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    CAS  PubMed  Google Scholar 

  • Garnerone AM, Cabanes D, Foussard M, Boistard P, Batut J (1999) Inhibition of the FixL sensor kinase by the FixT protein in Sinorhizobium meliloti. J Biol Chem 274:32500–32506

    CAS  PubMed  Google Scholar 

  • Geremia RA, Mergaert P, Geelen D, Van Montagu M, Holsters M (1994) The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Proc Natl Acad Sci USA 91:2669–2673

    CAS  PubMed  Google Scholar 

  • Gilles-Gonzalez MA, Ditta GS, Helinski DR (1991) A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350:170–172

    CAS  PubMed  Google Scholar 

  • Glazebrook J, Walker GC (1989) A novel exopolysaccharide can function in place of the cal-cofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56:661–672

    CAS  PubMed  Google Scholar 

  • Glucksmann MA, Reuber TL, Walker GC (1993a) Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti. J Bacteriol 175:7033–7044

    CAS  Google Scholar 

  • Glucksmann MA, Reuber TL, Walker GC (1993b) Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: a model for suc-cinoglycan biosynthesis. J Bacteriol 175:7045–7055

    CAS  Google Scholar 

  • Goldmann A, Boivin C, Fleury V, Message B, Lecoeur L, Maille M, Tepfer D. (1991) Betaine use by rhizosphere bacteria: genes essential for trigonelline, stachydrine, and carnitine catabolism in Rhizobium meliloti are located on pSym in the symbiotic region. Mol Plant Microbe Interact 4:571–578

    CAS  PubMed  Google Scholar 

  • Gonzalez V, Santamaria RI, Bustos P, Hernandez-Gonzalez I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramirez MA, Jimenez-Jacinto V, Collado-Vides J, Dávila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting repli-cons Proc Natl Acad Sci USA 103:3834–3839

    PubMed  Google Scholar 

  • Gottfert M, Horvath B, Kondorosi E, Putnoky P, Rodriguez-Quinones F, Kondorosi A (1986) At least two nodD genes are necessary for efficient nodulation of alfalfa by Rhizobium meliloti. J Mol Biol 191:411–420

    CAS  PubMed  Google Scholar 

  • Guo X, Flores M, Mavingui P, Fuentes SI, Hernández G, Dávila G, Palacios R (2003) Natural Genomic Design in Sinorhizobium meliloti: Novel Genomic Architectures. Genome Res 13:1810–1817

    CAS  PubMed  Google Scholar 

  • Guo H, Sun S, Finan TM, Xu J (2005) Novel DNA sequences from natural strains of the nitrogen-fixing symbiotic bacterium Sinorhizobium meliloti. Appl Environ Microbiol 71:7130–7138

    CAS  PubMed  Google Scholar 

  • Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (1990) Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes. J Bacteriol 172:2769–2773

    CAS  PubMed  Google Scholar 

  • Harwood CS, Parales RE (1996) The b-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    CAS  PubMed  Google Scholar 

  • Henikoff S, Haughn GW, Calvo JM, Wallace JC (1988) A large family of bacterial activator proteins. Proc Natl Acad Sci USA 85:6602–6606

    CAS  PubMed  Google Scholar 

  • Her GR, Glazebrook J, Walker GC, Reinhold VN (1990) Structural studies of a novel exopolysac-charide produced by a mutant of Rhizobium meliloti strain Rm1021. Carbohydr Res 198:305–312

    CAS  PubMed  Google Scholar 

  • Herrera-Cervera JA, Sanjuán-Pinilla JM, Olivares J, Sanjuán J (1998) Cloning and identification of conjugative transfer origins in the Rhizobium meliloti genome. J Bacteriol 180 : 4583–4590

    CAS  PubMed  Google Scholar 

  • Holloway P, McCormick W, Watson RJ, Chan YK (1996) Identification and analysis of the dis-similatory nitrous oxide reduction genes, nosRZDFY, of Rhizobium meliloti. J Bacteriol 178:1505–1514

    CAS  PubMed  Google Scholar 

  • Izquierdo J, Venkova-Canova T, Ramírez-Romero MA, Téllez-Sosa J, Hernández-Lucas I, Sanjuan J, Cevallos MA (2005). An antisense RNA plays a central role in the replication control of a repC plasmid. Plasmid 54:259–277

    CAS  PubMed  Google Scholar 

  • Jacobs TW, Egelhoff TT, Long SR (1985) Physical and genetic map of a Rhizobium meliloti nodu-lation gene region and nucleotide sequence of nodC. J Bacteriol 162:469–476

    CAS  PubMed  Google Scholar 

  • Jebbar M, Sohn-Bosser L, Bremer E, Bernard T, Blanco C (2005) Ectoine-induced proteins in Sinorhizobium meliloti include an Ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism. J Bacteriol 187:1293–1304

    CAS  PubMed  Google Scholar 

  • Jiang XM, Neal B, Santiago F, Lee SJ, Romana LK, Reeves PR (1991) Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar Typhimurium (strain LT2). Mol Microbiol 5:695–713

    CAS  PubMed  Google Scholar 

  • John M, Rohrig H, Schmidt J, Wieneke U, Schell J (1993) Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci USA 90:625–629

    CAS  PubMed  Google Scholar 

  • Kahng LS, Shapiro L (2003) Polar localization of replicon origins in the multipartite genomes of Agrobacterium tumefaciens and Sinorhizobium meliloti. J Bacteriol 185:3384–3391

    CAS  PubMed  Google Scholar 

  • Kaminski PA, Batut J, Boistard P (1998). A survey of symbiotic nitrogen fixation by rhizobia. In: The Rhizobiaceae. Spaink HP, Kondorosi A, Hooykaas PJJ (eds) Dordrecht, The Netherlands: Kluwer, pp 431–460.

    Google Scholar 

  • Karlin S, Barnett MJ, Campbell AM, Fisher RF, Mrazek J (2003) Predicting gene expression levels from codon biases in a-proteobacterial genomes Proc Natl Acad Sci USA 100:7313–7318

    CAS  PubMed  Google Scholar 

  • Keller M, Roxlau A, Weng WM, Schmidt M, Quandt J, Niehaus K, Jording D, Arnold W, Pühler A. (1995) Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. Mol Plant Microbe Interact 8:267–277

    CAS  PubMed  Google Scholar 

  • Kinkle BK, Schmidt EL (1991) Transfer of the Pea Symbiotic Plasmid pJB5JI in Nonsterile Soil. Appl Environ Microbiol 57:3264–3269

    CAS  PubMed  Google Scholar 

  • Koplin R, Wang G, Hotte B, Priefer UB, Pühler A (1993) A 3.9-kb DNA region of Xanthomonas campestris pv. campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose. J Bacteriol 175:7786–7792

    CAS  PubMed  Google Scholar 

  • Laberge S, Middleton AT, Wheatcroft R. (1995) Characterization, nucleotide sequence, and conserved genomic location of insertion sequence ISRm 5 in Rhizobium meliloti J. Bacteriol 177:3133–3142

    CAS  Google Scholar 

  • Leigh JA, Lee CC (1988) Characterization of polysaccharides of Rhizobium meliloti exo mutants that form ineffective nodules. J Bacteriol 170:3327–3332

    CAS  PubMed  Google Scholar 

  • Leigh JA, Reed JW, Hanks JF, Hirsch AM, Walker GC (1987) Rhizobium meliloti mutants that fail to succinylate their calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell 51:579–587

    CAS  PubMed  Google Scholar 

  • Leigh JA, Signer ER, Walker GC (1985) Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA 82:6231–6235

    CAS  PubMed  Google Scholar 

  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oli-gosaccharide signal. Nature 344:781–784

    CAS  PubMed  Google Scholar 

  • Long S, Reed JW, Himawan J, Walker GC (1988) Genetic analysis of a cluster of genes required for synthesis of the calcofluor-binding exopolysaccharide of Rhizobium meliloti J Bacteriol 170:4239–4248

    CAS  Google Scholar 

  • Lynch D, O'Brien J, Welch T, Clarke P, Cuív PO, Crosa JH, O'Connell M (2001) Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti J Bacteriol 183:2576–2585

    CAS  Google Scholar 

  • MacLean AM, MacPherson G, Aneja P, Finan TM (2006) Characterization of the b-ketoadipate pathway in Sinorhizobium meliloti Appl Environ Microbiol 72:5403–5413

    CAS  Google Scholar 

  • MacLellan SR, Smallbone LA, Sibley CD, Finan TM (2005) The expression of a novel antisense gene mediates incompatibility within the large repABC family of a-proteobacterial plasmids. Mol Microbiol 55:611–623

    CAS  PubMed  Google Scholar 

  • MacLellan SR, Zaheer R, Sartor AL, MacLean AM, Finan TM (2006) Identification of a mega-plasmid centromere reveals genetic structural diversity within the repABC family of basic replicons. Mol Microbiol 59:1559–1575.

    CAS  PubMed  Google Scholar 

  • Mahillon M, Chandler M (1998) Insertion Sequence. Microbiol Mol Biol Rev 62:725–774

    CAS  PubMed  Google Scholar 

  • Margolin W, Long SR (1993) Isolation and characterization of a DNA replication origin from the 1,700-kilobase-pair symbiotic megaplasmid pSym-b of Rhizobium meliloti J Bacteriol 175:6553–6561

    CAS  PubMed  Google Scholar 

  • Martínez-Abarca F, Barrientos-Durán A, Fernández-López M, Toro N (2004) The RmInt1 group II intron has two different retrohoming pathways for mobility using predominantly the nascent lagging strand at DNA replication forks for priming. Nucleic Acids Res 20:2880–2888

    Google Scholar 

  • Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn 5 mutagenesis. J Bacteriol 149:114–122

    CAS  PubMed  Google Scholar 

  • Moreira LM, Becker JD, Pühler A, Becker A (2000) The Sinorhizobium meliloti ExpE1 protein secreted by a type I secretion system involving ExpD1 and ExpD2 is required for biosynthesis or secretion of the exopolysaccharide galactoglucan. Microbiology 146:2237–2248

    CAS  PubMed  Google Scholar 

  • Muller P, Keller M, Weng WM, Quandt J, Arnold W, Pühler A (1993) Genetic analysis of the Rhizobium meliloti exoYFQ operon: ExoY is homologous to sugar transferases and ExoQ represents a transmembrane protein. Mol Plant Microbe Interact 6:55–65

    CAS  PubMed  Google Scholar 

  • Mulligan JT, Long SR (1985) Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD Proc Natl Acad Sci USA 82:6609–6613

    CAS  PubMed  Google Scholar 

  • Mulligan JT, Long SR (1989) A family of activator genes regulates expression of Rhizobium meliloti nodulation genes. Genetics 122:7–18

    CAS  PubMed  Google Scholar 

  • Natera SH, Guerreiro N, Djordjevic MA (2000) Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Mol Plant Microbe Interact 13:995–1009

    CAS  PubMed  Google Scholar 

  • Nisa-Martínez R, Jiménez-Zurdo JI, Martínez-Abarca F, Muñoz-Adelantado E, Toro N (2007) Dispersion of the RmInt1 group II intron in the Sinorhizobium meliloti genome upon acquisition by conjugative transfer. Nucleic Acids Res 35:214–222

    PubMed  Google Scholar 

  • Obendorf RL (1997). Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Sci Res 7:63–74

    CAS  Google Scholar 

  • Ogawa J, Long SR (1995) The Rhizobium meliloti groEL c locus is required for regulation of early nod genes by the transcription activator NodD. Genes Dev 9:714–729

    CAS  PubMed  Google Scholar 

  • Oresnik IJ, Liu LL, Yost CK, Hynes MF (2000) Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability J Bacteriol 182:3582–3586

    CAS  PubMed  Google Scholar 

  • Patriarca EJ, Tate R, Iaccarino M (2002) Key role of bacterial NH4+ metabolism in Rhizobium-plant symbiosis. Microbiol Mol Biol Rev 66:203–222

    CAS  PubMed  Google Scholar 

  • Peixoto L, Zavala A, Romero H, Musto H (2003) The strength of translational selection for codon usage varies in the three replicons of Sinorhizobium meliloti Gene 320:109–116

    CAS  PubMed  Google Scholar 

  • Perrine FM, Hocart CH, Hynes MF, Rolfe BG (2005) Plasmid-associated genes in the model micro-symbiont Sinorhizobium meliloti 1021 affect the growth and development of young rice seedlings. Environ Microbiol 7:1826–1838

    CAS  PubMed  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    CAS  PubMed  Google Scholar 

  • Poysti NJ, Loewen ED, Wang Z, Oresnik IJ (2007) Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism. Microbiology 153:727–736

    CAS  PubMed  Google Scholar 

  • Pretorius-Güth IM, Pühler A, Simon R. (1990) Conjugal Transfer of Megaplasmid 2 between Rhizobium meliloti Strains in Alfalfa Nodules. Proc Natl Acad Sci USA 94:5483–5488

    Google Scholar 

  • Ramírez-Romero MA, Soberón N, Perez-Oseguera A, Téllez-Sosa J, Cevallos MA (2000) Structural elements required for replication and incompatibility of the Rhizobium etli symbiotic plasmid. J Bacteriol 182:3117–3124

    PubMed  Google Scholar 

  • Reed JW, Capage M, Walker GC (1991) Rhizobium meliloti exoG and exoJ mutations affect the exoX-exoY system for modulation of exopolysaccharide production. J Bacteriol 173:3776–3788

    CAS  PubMed  Google Scholar 

  • Reinhold BB, Chan SY, Reuber TL, Marra A, Walker GC, Reinhold VN (1994) Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021. J Bacteriol 176:1997–2002

    CAS  PubMed  Google Scholar 

  • Reuber TL, Walker GC (1993a) The acetyl substituent of succinoglycan is not necessary for alfalfa nodule invasion by Rhizobium meliloti Rm1021. J Bacteriol 175:3653–3655

    CAS  Google Scholar 

  • Reuber TL, Walker GC (1993b) Biosynthesis of succinoglycan, a symbiotically important exopol-ysaccharide of Rhizobium meliloti Cell 74:269–280

    CAS  Google Scholar 

  • Reyrat JM, David M, Blonski C, Boistard P, Batut J (1993) Oxygen-regulated in vitro transcription of Rhizobium meliloti nifA and fixK genes. J Bacteriol 175:6867–6872

    CAS  PubMed  Google Scholar 

  • Rohrig H et-al. (1994) Biosynthesis of lipooligosaccharide nodulation factors: Rhizobium NodA protein is involved in N -acylation of the chitooligosaccharide backbone. Proc Natl Acad Sci USA 91:3122–3126

    CAS  PubMed  Google Scholar 

  • Ronson CW, Astwood PM, Downie JA (1984) Molecular cloning and genetic organization of C4-dicarboxylate transport genes from Rhizobium leguminosarum. J Bacteriol 160:903–909

    CAS  PubMed  Google Scholar 

  • Rosenberg C, Boistard P, Dénarié J, Casse-Delbart F (1981) Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol Gen Genet 184:326–333

    CAS  PubMed  Google Scholar 

  • Rosenberg C, Casse-Delbart F, Dusha I, David M, Boucher C (1982) Megaplasmids in the plant-associated bacteria Rhizobium meliloti and Pseudomonas solanacearum J Bacteriol 150:402–406

    CAS  PubMed  Google Scholar 

  • Rostas K, Kondorosi E, Horvath B, Simoncsits A, Kondorosi A (1986) Conservation of extended promoter regions of nodulation genes in Rhizobium Proc Natl Acad Sci USA 83:1757–1761

    CAS  PubMed  Google Scholar 

  • Ruvkun GB, Ausubel FM (1981) A general method for site-directed mutagenesis in prokaryotes. Nature 289:85–88

    CAS  PubMed  Google Scholar 

  • Ruvkun GB, Long SR, Meade HM, van der Bos RC, Ausubel FM (1982a) ISRm 1 : a Rhizobium meliloti insertion sequence that transposes preferentially into nitrogen fixation genes. J Mol Appl Genet 1:405–418

    CAS  Google Scholar 

  • Ruvkun GB, Sundaresan V, Ausubel FM (1982b) Directed transposon Tn5 mutagenesis and complementation analysis of Rhizobium meliloti symbiotic nitrogen fixation genes. Cell 29:551–559

    CAS  Google Scholar 

  • Schlaman HL, Phillips DA, Kondorosi E (1998). In The Rhizobiaceae. Spaink HP, Kondorosi A, Hooykaas PJJ (eds). Dordrecht, The Netherlands: Kluwer, pp 361–386

    Google Scholar 

  • Schmidt J, John M, Kondorosi E, Kondorosi A, Wieneke U, Schröder G, Schröder J, Schell J. (1984) Mapping of the protein-coding regions of Rhizobium meliloti common nodulation genes. EMBO J 3:1705–1711

    CAS  PubMed  Google Scholar 

  • Schultze M, Quiclet-Sire B, Kondorosi E, Virelizer H, Glushka JN, Endre G, Géro SD, Kondorosi A. (1992) Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity. Proc Natl Acad Sci USA 89:192–196

    CAS  PubMed  Google Scholar 

  • Schwedock JS, Long SR (1992) Rhizobium meliloti genes involved in sulfate activation: the two copies of nodPQ and a new locus, saa Genetics 132:899–909

    CAS  Google Scholar 

  • Selbitschka W, ZekrÌ S, Schröder G, Pühler A, Toro N (1999) The Sinorhizobium meliloti insertion sequence (IS) elements ISRm102F34-ISRm7 and ISRm220.13.5 belong to a new family of insertion sequence elements. FEMS Microbiol Lett 172:1–7

    CAS  PubMed  Google Scholar 

  • Sharma SB, Signer ER (1990) Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn 5-gusA Genes Dev 4:344–356

    CAS  Google Scholar 

  • Shearman CA, Rossen L, Johnston AW, Downie JA (1986) The Rhizobium leguminosarum nodu-lation gene nodF encodes a polypeptide similar to acyl-carrier protein and is regulated by nodD plus a factor in pea root exudate. EMBO J 5:647–652

    CAS  PubMed  Google Scholar 

  • Sibley CD, MacLellan SR, Finan T (2006) The Sinorhizobium meliloti chromosomal origin of replication. Microbiology 152:443–455

    CAS  PubMed  Google Scholar 

  • Silva C, Vinuesa P, Eguiarte LE, Souza V, Martínez-Romero E (2005) Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial sym-biont of diverse legumes. Mol Ecol 14:4033–4050

    CAS  PubMed  Google Scholar 

  • Sobral BW, Honeycutt RJ, Atherly AG, McClelland M (1991) Electrophoretic separation of the three Rhizobium meliloti replicons. J Bacteriol 173:5173–5180

    CAS  PubMed  Google Scholar 

  • Stiens M, Schneiker S, Keller M, Kuhn S, Pühler A, Schlüter A (2006) Sequence analysis of the 144-kilobase accessory plasmid pSmeSM11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol 72:3662–3672

    CAS  PubMed  Google Scholar 

  • Stiens M, Schneiker S, Pühler A, Schlüter A (2007) Sequence analysis of the 181-kb accessory plasmid pSmeSM11b, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. FEMS Microbiol Lett 271:297–309

    CAS  PubMed  Google Scholar 

  • Stowers MD (1985) Carbon metabolism in Rhizobium species. Annu Rev Microbiol 39:89–108

    CAS  PubMed  Google Scholar 

  • Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci USA 12:8985–8989

    Google Scholar 

  • Sun S, Guo H, Xu J (2006) Multiple gene genealogical analyses reveal both common and distinct population genetic patterns among replicons in the nitrogen-fixing bacterium Sinorhizobium meliloti Microbiology 152:3245–3259

    CAS  Google Scholar 

  • Sutton JM, Lea EJ, Downie JA (1994) The nodulation-signaling protein NodO from Rhizobium leguminosarum biovar viciae forms ion channels in membranes. Proc Natl Acad Sci USA 91:9990–9994

    CAS  PubMed  Google Scholar 

  • Swanson JA, Mulligan JT, Long SR (1993) Regulation of syrM and nodD3 in Rhizobium meliloti Genetics 134:435–444

    CAS  Google Scholar 

  • Szeto WW, Zimmerman JL, Sundaresan V, Ausubel FM (1984) A Rhizobium meliloti symbiotic regulatory gene. Cell 36:1035–1043

    CAS  PubMed  Google Scholar 

  • Talibart R, Jebbar M, Gouffi K, Pichereau V, Gouesbet G, Blanco C, Bernard T, Pocard J (1997) Transient accumulation of glycine betaine and dynamics of endogenous osmolytes in salt-stressed cultures of Sinorhizobium meliloti Appl Environ Microbiol 63:4657–4663

    CAS  Google Scholar 

  • Toro N, Martínez-Abarca F, Fernandez-Lopez M, Munoz-Adelantado E (2003) Diversity of group II introns in the genome of Sinorhizobium meliloti Mol Genet Genomics 268:628–636

    CAS  Google Scholar 

  • Truchet G, Rosenberg C, Vasse J, Julliot JS, Camut S, Dénarié J (1984) Transfer of Rhizobium meliloti pSym genes into Agrobacterium tumefaciens : host-specific nodulation by atypical infection. J Bacteriol 157:134–142

    CAS  PubMed  Google Scholar 

  • Uttaro AD, Cangelosi GA, Geremia RA, Nester EW, Ugalde RA (1990) Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens J Bacteriol 172:1640–1646

    CAS  Google Scholar 

  • Van Sluys MA, Monteiro-Vitorello CB, Camargo LE, Menck CF, Da Silva AC, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ (2002) Comparative genomic analysis of plant-associated bacteria. Annu Rev Phytopathol 40:169–189

    PubMed  Google Scholar 

  • Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martínez-Romero E (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716

    CAS  PubMed  Google Scholar 

  • Watson RJ (1990) Analysis of the C4-dicarboxylate transport genes of Rhizobium meliloti: nucle-otide sequence and deduced products of dctA, dctB, and dctD. Mol Plant Microbe Interact 3:174–181

    CAS  PubMed  Google Scholar 

  • Watson RJ, Chan YK, Wheatcroft R, Yang AF, Han SH (1988) Rhizobium meliloti genes required for C4-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid. J Bacteriol 170:927–934

    CAS  PubMed  Google Scholar 

  • Wernegreen JJ and Riley MA (1999) Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages J Bacteriol 150:402–406

    Google Scholar 

  • Wernegreen JJ, Harding EE, Riley MA (1997) Rhizobium gone native: unexpected plasmid stability of indigenous Rhizobium leguminosarum Proc Natl Acad Sci USA 94:5483–5488

    CAS  Google Scholar 

  • Wheatcroft R, Laberge S (1991) Identification and nucleotide sequence of Rhizobium meliloti insertion sequence ISRm 3 : similarity between the putative transposase encoded by ISRm3 and those encoded by Staphylococcus aureus IS256 and Thiobacillus ferrooxidans IST2 J Bacteriol 173:2530–2538

    CAS  PubMed  Google Scholar 

  • Wong CH, Pankhurst CE, Kondorosi A, Broughton WJ (1983) Morphology of root nodules and nodule-like structures formed by Rhizobium and Agrobacterium strains containing a Rhizobium meliloti megaplasmid. J Cell Biol 97:787–794

    CAS  PubMed  Google Scholar 

  • Wong K, Golding GB (2003) A phylogenetic analysis of the pSymB replicon from the Sinorhizobium meliloti genome reveals a complex evolutionary history. Can J Microbiol (4):269–280

    Google Scholar 

  • Yarosh OK, Charles TC, Finan TM (1989) Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti Mol Microbiol 3:813–823

    CAS  Google Scholar 

  • Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson R, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M,Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    PubMed  Google Scholar 

  • Yurgel SN, Kahn ML (2004) Dicarboxylate transport by rhizobia. FEMS Microbiol Rev 28:489–501

    CAS  PubMed  Google Scholar 

  • Zekrí S, Soto M, Toro N (1998a) ISRm4–1 and ISRm9, two novel insertion sequences from Sinorhizobium meliloti Gene 207:93–96

    Google Scholar 

  • Zekrí S, Toro N (1998b) A new insertion sequence from Sinorhizobium meliloti with homology to IS1357 from Methylobacterium sp. and IS1452 from Acetobacter pasteurianus. FEMS Microbiol Lett 158:83–87

    Google Scholar 

  • Zhan HJ, Levery SB, Lee CC, Leigh JA (1989) A second exopolysaccharide of Rhizobium meliloti strain SU47 that can function in root nodule invasion. Proc Natl Acad Sci USA 86:3055–3059

    CAS  PubMed  Google Scholar 

  • Zhan HJ, Lee CC, Leigh JA (1991) Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU47 by low phosphate concentrations. J Bacteriol 173:7391–7394

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barloy-Hubler, F., Jebbar, M. (2009). Sinorhizobium meliloti Megaplasmids and Symbiosis in S. meliloti . In: Schwartz, E. (eds) Microbial Megaplasmids. Microbiology Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85467-8_4

Download citation

Publish with us

Policies and ethics