Skip to main content

The Complexity of Local List Decoding

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5171))

Abstract

We study the complexity of locally list-decoding binary error correcting codes with good parameters (that are polynomially related to information theoretic bounds). We show that computing majority over Θ(1/ε) bits is essentially equivalent to locally list-decoding binary codes from relative distance 1/2 − ε with list size at most poly (1/ε). That is, a local-decoder for such a code can be used to construct a circuit of roughly the same size and depth that computes majority on Θ(1/ε) bits. On the other hand, there is an explicit locally list-decodable code with these parameters that has a very efficient (in terms of circuit size and depth) local-decoder that uses majority gates of fan-in Θ(1/ε).

Using known lower bounds for computing majority by constant depth circuits, our results imply that every constant-depth decoder for such a code must have size almost exponential in 1/ε (this extends even to sub-exponential list sizes). This shows that the list-decoding radius of the constant-depth local-list-decoders of Goldwasser et al. [STOC07] is essentially optimal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blinkovsky, V.M.: Bounds for codes in the case of list decoding of finite volume. Problems of Information Transmission 22(1), 7–19 (1986)

    Google Scholar 

  2. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal on Computing 13(4), 850–864 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. Journal of the ACM 45(6), 965–981 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Deshpande, A., Jain, R., Kavitha, T., Radhakrishnan, J., Lokam, S.V.: Better Lower Bounds for Locally Decodable Codes. In: Proceedings of the IEEE Conference on Computational Complexity, pp. 184–193 (2002)

    Google Scholar 

  5. Goldwasser, S., Gutfreund, D., Healy, A., Kaufman, T., Rothblum, G.N.: Verifying and decoding in constant depth. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 440–449 (2007)

    Google Scholar 

  6. Goldreich, O., Karloff, H.J., Schulman, L.J., Trevisan, L.: Lower bounds for linear locally decodable codes and private information retrieval. Computational Complexity 15(3), 263–296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 25–32 (1989)

    Google Scholar 

  8. Gutfreund, D., Rothblum, G.N.: The complexity of local list decoding. Technical Report TR08-034, Electronic Colloquium on Computational Complexity (2008)

    Google Scholar 

  9. Guruswami, V., Vadhan, S.: A lower bound on list size for list decoding. In: Chekuri, C., Jansen, K., Rolim, J., Trevisan, L. (eds.) RANDOM 2005. LNCS, vol. 3624, pp. 318–329. Springer, Heidelberg (2005)

    Google Scholar 

  10. Impagliazzo, R., Jaiswal, R., Kabanets, V., Wigderson, A.: Uniform direct-product theorems: Simplified, optimized, and derandomized. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 579–588 (2008)

    Google Scholar 

  11. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable codes via a quantum argument. Journal of Computer and System Sciences 69(3), 395–420 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 80–86 (2000)

    Google Scholar 

  13. Nisan, N., Wigderson, A.: Hardness vs. randomness. Journal of Computer and System Sciences 49, 149–167 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Obata, K.: Optimal Lower Bounds for 2-Query Locally Decodable Linear Codes. In: Proceedings of the 5th International Workshop on Randomization and Computation (RANDOM), pp. 39–50 (2002)

    Google Scholar 

  15. Razborov, A.A.: Lower bounds on the dimension of schemes of bounded depth in a complete basis containing the logical addition function. Akademiya Nauk SSSR. Matematicheskie Zametki 41(4), 598–607, 623 (1987)

    MathSciNet  Google Scholar 

  16. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit complexity. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 77–82 (1987)

    Google Scholar 

  17. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR Lemma. Journal of Computer and System Sciences 62(2), 236–266 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shaltiel, R., Viola, E.: Hardness amplification proofs require majority. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 589–598 (2008)

    Google Scholar 

  19. Trevisan, L.: List-decoding using the XOR lemma. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 126–135 (2003)

    Google Scholar 

  20. Trevisan, L., Vadhan, S.: Pseudorandomness and average-case complexity via uniform reductions. Computational Complexity 16(4), 361–364 (2007)

    Article  MathSciNet  Google Scholar 

  21. Viola, E.: The complexity of constructing pseudorandom generators from hard functions. Computational Complexity 13(3-4), 147–188 (2005)

    Article  MathSciNet  Google Scholar 

  22. Viola, E.: The complexity of hardness amplification and derandomization. PhD thesis, Harvard University (2006)

    Google Scholar 

  23. Wehner, S., de Wolf, R.: Improved Lower Bounds for Locally Decodable Codes and Private Information Retrieval. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1424–1436. Springer, Heidelberg (2005)

    Google Scholar 

  24. Yao, A.C.: Theory and applications of trapdoor functions. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 80–91 (1982)

    Google Scholar 

  25. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 266–274 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashish Goel Klaus Jansen José D. P. Rolim Ronitt Rubinfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutfreund, D., Rothblum, G.N. (2008). The Complexity of Local List Decoding. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2008 2008. Lecture Notes in Computer Science, vol 5171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85363-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85363-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85362-6

  • Online ISBN: 978-3-540-85363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics