Skip to main content

Autostereoscopic Displays

  • Reference work entry
Book cover Handbook of Visual Display Technology

Abstract

Autostereoscopic displays show stereo 3D without the need for spectacles. The simplest show the same pair of views as a stereoscopic display and make them visible each to one eye with lenslets, barriers, or something similar. The more advanced displays are such that what the user sees depends on their point of view and this is done by presenting many views, tracking the head of the viewer, or both. If the angle between views is sufficiently fine, autostereoscopic displays look like holograms except for the slight blurring caused by random phase between pixels. This chapter presents an overview of established and emerging autostereoscopic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Travis ARL (1997) The display of three-dimensional video images. Proc IEEE 85:1817–1832

    Article  Google Scholar 

  2. Lippmann MG (1908) Epreuves reversibles donnant la sensation du relief. J Phys 7:821–825

    Google Scholar 

  3. Okano F, Hoshino H, Arai J, Yayuma I (1997) Real time pickup method for a three-dimensional image based on integral photography. Appl Opt 36:1598–1603

    Article  Google Scholar 

  4. Kim Y, Jung J-H, Hong K, Park G, Lee B (2010) 37.4: Accommodation response in viewing integral imaging. SID symposium digest of technical papers, vol 41, Seattle, May 2010, p 530–532

    Article  Google Scholar 

  5. Hoffman DM, Girshick AR, Akeley K, Banks MS (2008) Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J Vis 8(3):33, 1–30

    Google Scholar 

  6. Schowengerdt BT, Seibel EJ (2005) 7.1: True 3D display technology. SID symposium digest of technical papers, vol 36, Boston, May 2005, pp 86–89

    Article  Google Scholar 

  7. Cees Van Berkel C (1999) Image preparation for 3D-LCD. In: Proceedings of SPIE vol 3639, stereoscopic displays and virtual reality systems VI, San Jose, pp 84–91, May 1999

    Chapter  Google Scholar 

  8. Im H-j, Jung S-m, Lee B-j, Hong H-k, Shin H-h (2008) 20.1: Mobile 3D displays based on a LTPS 2.4 VGA LCD panel attached with lenticular lens sheets. SID symposium digest of technical papers, vol 39, Los Angeles, p 256–259

    Google Scholar 

  9. Woodgate GJ, Harrold J (2003) LP-1: High efficiency reconfigurable 2D/3D autostereoscopic display. SID symposium digest of technical papers, vol 34, Baltimore, pp 394–397

    Article  Google Scholar 

  10. de Zwart ST, IJzerman WL, Dekker T, Wolter WAM (2004) A 20” switchable auto-stereoscopic 2D/3D display. In: Proceedings of 11th international display workshop (IDW), Niigata, pp 1459–1460

    Google Scholar 

  11. Hiddink MGH, de Zwart ST, Willemsen OH, Dekker T (2006) 20.1: Locally switchable 3D displays. SID international symposium digest of technical papers, vol 37, San Francisco, pp 1142–1145

    Google Scholar 

  12. Ren H, Fox D, Wu S-T (2007) 62.1: Liquid crystal and liquid lenses for displays and image processing. SID symposium digest of technical papers, vol 38, Long Beach, pp 1733–1736

    Article  Google Scholar 

  13. Kao Y-Y, Huang Y-P, Yang K-X, Chao PCP, Tsai C-C, Mo C-N (2009) 11.1: An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array. SID symposium digest of technical papers, vol 40, San Antonio, June 2009, p 111–114

    Article  Google Scholar 

  14. Moseley RR, Woodgate GJ, Jacobs AMS, Harrold J, Ezra D (2002) ‘Parallax barrier, display, passive polarization modulating optical element and method of making such an element’, US Patent 6437915

    Google Scholar 

  15. Eichenlaub JB, Hollands D, Hutchins JM (1995) A prototype flat plane hologram-like display that produces multiple perspective views at full resolution. In: Proceedings of SPIE vol 2409, stereoscopic displays and virtual reality systems II, San Jose, pp 102–112

    Chapter  Google Scholar 

  16. Travis ARL (1990) Autostereoscopic 3-D display. Appl Opt 29:4341–4343

    Article  Google Scholar 

  17. Travis ARL (1997) View-sequential holographic display. International Patent WO9900993, 1997

    Google Scholar 

  18. Ezra D, Woodgate GJ, Omar BA, Holliman NS, Harrold J, Shapiro LS (1995) New autostereoscopic display system. In: Proceedings of SPIE, vol 2409, stereoscopic displays and virtual reality systems II, San Jose, p 31

    Chapter  Google Scholar 

  19. Brott R, Schultz J (2010) 16.3: Directional backlight lightguide considerations for full resolution autostereoscopic 3D displays. SID Symposium digest of technical papers, vol 41, Seattle, pp 218–221

    Article  Google Scholar 

  20. Käläntär K, Matsumoto SF, Katoh T, Mizuno T (2004) Backlight unit with double-surface light emission using a single micro-structured lightguide plate. J SID 12:379–387

    Google Scholar 

  21. Travis ARL, Large T, Emerton N, Bathiche S (2009) Collimated light from a waveguide for a display backlight. Opt Express 17:19714–19719

    Article  Google Scholar 

  22. Mo YG, Kim M, Kang CK, Jeong JH, Park YS, Choi CG, Kim HD, Kim SS (2010) 69.3: Amorphous oxide TFT backplane for large size AMOLED TVs. SID symposium digest of technical papers, vol 41, Seattle, pp 1037–1040

    Article  Google Scholar 

  23. Koshida N, Dogen Y, Imaizumi E, Nakano A, Mochizuki A (2009) 45.2: An over 500 Hz frame rate drivable PSS-LCD: its basic performance. SID symposium digest of technical papers, vol 40, San Antonio, pp 669–672

    Article  Google Scholar 

  24. Wilkinson TD, Crossland WA, Coker T, Davey AB, Stanley M, Yu TC (1997) The fast bitplane SLM: a new ferroelectric liquid crystal on silicon spatial light modulator. In: Spatial light modulators, technical digest. Optical society of America, Washington, pp 149–150

    Google Scholar 

  25. Sakai H, Yamasaki M, Koike T, Oikawa M, Kobayashi M (2009) 41.2: Autostereoscopic display based on enhanced integral photography using overlaid multiple projectors. SID symposium digest of technical papers, vol 40, San Antonio, pp 611–614

    Article  Google Scholar 

  26. Baird JL (1942) Stereoscopic colour television. Wireless World 48:31–32

    Google Scholar 

  27. Travis ARL, Lang SR (1990) A CRT based autostereoscopic 3-D display. In: Eurodisplay 1990, 10th international display research conference, 26–28 September 1990, Amsterdam, LP10

    Google Scholar 

  28. Cossairt O, Møller C, Travis A, Benton SA (2004) Novel view sequential display based on DMD technology. In: Proceedings of SPIE vol 2591, stereoscopic displays and virtual reality systems XI, San Jose, pp 273–278

    Chapter  Google Scholar 

  29. Møller CN, Travis AR (2005) Time multiplexed autostereoscopic flat panel display using an optical wedge. In: Proceedings of SPIE vol 5664, stereoscopic displays and virtual reality systems XII, San Jose, pp 150–157

    Google Scholar 

  30. Travis ARL, Møller CN, Lee CMG (2006) Flat projection for 3-D. Proc IEEE 94(3):539–549

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Travis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Travis, A. (2012). Autostereoscopic Displays. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79567-4_113

Download citation

Publish with us

Policies and ethics