Skip to main content

The Role of Exotic Marine Ecosystem Engineers

  • Chapter
Biological Invasions in Marine Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 204))

Of all invader impacts, those likeliest to have the most wide-reaching consequences are alterations to ecosystems, as they can essentially “change the rules of existence” for broad suites of resident biota (Vitousek 1990). One often-considered class of ecosystem-level effects of exotics is the disruption of energy or material fluxes (Chap. 17, Grosholz and Ruiz). For example, the initiation of trophic cascades, which can be trig gered by events such as the invasion of new predators, can dramatically alter energy flow within ecosystems (e.g., Spencer et al. 1991). Similarly, the cycling of nutrients through biogeochemical pathways can be affected by exotics (e.g., Larned 2003). This can occur through the invasion of species that differ from natives in their utilization of nutrients, such as when nitrogen-fixing plants invade nitrogen-poor soils (Vitousek et al. 1987). In addition to directly affecting the cycling of energy or nutrients, exotics also can alter the actual physical or chemical nature of the ecosystem itself. Such organisms have been called ecosystem engineers (Jones et al. 1994, 1997).

Reduced to its essence, ecosystem engineers affect other biota via alterations to the abiotic environment (Fig. 16.1). These species create, destroy, or otherwise modify habitats, and thereby affect resources or stressors (e.g., living space, sedi ment, and ambient temperature) that affect other organisms (Jones et al. 1994; Crooks 2002). The beaver is the classic example of an ecosystem engineer. By cre ating dams out of trees, beavers dramatically change the nature of the ecosystem by converting forests to ponds, thereby benefiting aquatic species at the expense of ter restrial ones. Beavers have effects beyond pond creation, however. The trees they fell are themselves ecosystem engineers that create shade, provide structure for nests, and dampen winds, and the loss of these engineering functions alters forest areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen BJ, Williams SL (2003) Native eelgrass Zostera marina controls growth and reproduction of an invasive mussel through food limitation. Mar Ecol Prog Ser 254:57–67

    Article  Google Scholar 

  • Bertness MD (1984) Habitat and community modification by an introduced herbivorous snail. Ecology 65:370–381

    Article  Google Scholar 

  • Britton-Simmons KH (2004) Direct and indirect effects of the introduced alga Sargassum muticum on benthic subtidal communities of Washington State, USA. Mar Ecol Prog Ser 277:61–78

    Article  Google Scholar 

  • Brown JH (1995) Organisms as engineers: a useful framework for studying effects on ecosystems? Trends Ecol Evol 10:51–52

    Article  Google Scholar 

  • Byers JE, Jones CG, Cuddington K, Talley TS, Hastings A, Lambrinos JG, Crooks JA, Wilson WG (2006) Using ecosystem engineers to restore ecological systems. Trends Ecol Evol 23:493–500

    Article  Google Scholar 

  • Carlton JT (1979) History, biogeography, and ecology of the introduced marine and estuarine invertebrates of the Pacific coast of North America. PhD Thesis, University of California, Davis

    Google Scholar 

  • Casas G, Scrosati R, Luz Piriz M (2004) The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biol Invas 6:411–416

    Article  Google Scholar 

  • Castilla JC, Lagos NA, Cerda M (2004) Marine ecosystem engineering by the alien ascidian Pyura praeputialis on a mid-intertidal rocky shore. Mar Ecol Prog Ser 268:119–130

    Article  Google Scholar 

  • Chapin FS, Reynolds H, D'Antonio CM, Eckhart V (1996) The functional role of species in terrestrial ecosystems. In: Walker B, Steffen W (eds). Global change in terrestrial ecosystems. Cambridge University Press, Cambridge, pp 403–428

    Google Scholar 

  • Chauvaud L, Thompson JK, Cloern JE, Thouzeau G (2003) Clams as CO2 generators: the Potamocorbula amurensis example in San Francisco Bay. Limnol Oceanogr 48: 2086–2092

    CAS  Google Scholar 

  • Coleman FC, Williams SL (2002) Overexploiting marine ecosystem engineers: potential consequences for biodiversity. Trends Ecol Evol 17:40–44

    Article  Google Scholar 

  • Creese RSH, DeLuca S, Wharton W (1997) Ecology and environmental impact of Musculista senhousia (Mollusca: Bivalvia: Mytilidae) in Tamaki Estuary, Auckland, New Zealand. N Z J Mar Freshwater Res 31:225–236

    Article  Google Scholar 

  • Crooks JA (1996) The population ecology of an exotic mussel, Musculista senhousia, in a southern California bay. Estuaries 19:42–50

    Article  Google Scholar 

  • Crooks JA (1998) Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar Ecol Prog Ser 162:137–152

    Article  Google Scholar 

  • Crooks JA (2001) Assessing invader roles within changing ecosystems: historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol Invas 3:23–36

    Article  Google Scholar 

  • Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166

    Article  Google Scholar 

  • Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329

    Article  Google Scholar 

  • Crooks JA (2006a) Musculista senhousia. In: Boersma PD, Reichard S, Van Buren A (eds) Invasive species of the Pacific northwest. University of Washington Press, Seattle, pp 112–113

    Google Scholar 

  • Crooks JA (2006b) The arrival, establishment, and integration of an invasive marine mussel into foreign ecosystems. In: Koike F, Clout MN, Kawamichi M, De Poorter M, Iwatsuki K (eds) Proceedings of the International Conference on Assessment and Control of Invasion Risks. Shoukadoh Book Sellers, Kyoto, Japan, and IUCN Press, Gland, Switzerland, pp 113–115

    Google Scholar 

  • Crooks JA, Khim HS (1999) Architectural vs. biological effects of habitat-altering, exotic mussel, Musculista senhousia. J Exp Mar Biol Ecol 240:53–75

    Article  Google Scholar 

  • Crooks JA, Soulé ME (1999) Lag times in population explosions of invasive species. In: Sandlund OT, Schei PJ, Viken A (eds) Invasive species and biodiversity management. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 103–125

    Google Scholar 

  • Cuddington K, Hastings A (2004) Invasive engineers. Ecol Model 178:335–347

    Article  Google Scholar 

  • Cuddington K, Byers JE, Wilson WG, Hastings A (2007) Ecosystem engineers. Plants to protists. Elsevier, San Diego, USA

    Google Scholar 

  • Curiel D, Guidetti P, Bellemo G, Scattolin M, Marzocchi M (2001) The introduced alga Undaria pinnatifida (Laminariales, Alariceae) in the lagoon of Venice. Hydrobiologia 477:209–219

    Article  Google Scholar 

  • Daehler CC, Strong DR (1996) Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biol Conserv 78:51–58

    Article  Google Scholar 

  • Darrigran G (2002) Potential impact of filter-feeding invaders on temperate inland freshwater environments. Biol Invas 4:145–156

    Article  Google Scholar 

  • Davies BR, Stuart V, de Villiers M (1989) The filtration activity of a serpulid polychaete population (Ficopomatus enigmaticus (Fauvel) ) and its effects on water quality in a coastal marina. Estuarine Coastal Shelf Sci 29:613–620

    Article  CAS  Google Scholar 

  • de Vos A, Manville RH, Van Gelder RG (1956) Introduced mammals and their influence on native biota. Zoologica 41:163–194

    Google Scholar 

  • Demopoulos AWJ (2004) Aliens in paradise: a comparative assessment of introduced and native mangrove benthic community composition, food-web structure, and litter-fall production. PhD Thesis. University of Hawaii, Honolulu, HI

    Google Scholar 

  • Escapa M, Isaacch JP, Daleo JAP, Iribarne O, Borges M, Dos Santos EP, Gagliardini DA, Lasta M (2004) The distribution and ecological effects of the introduced Pacific oyster Crassostreaigas. J Shellfish Res 23:765–772

    Google Scholar 

  • Ford MA, Grace JB (1998) Effects of vertebrate herbivores on soil processes, plant biomass, litter accumulation and soil elevational changes in a coastal marsh. J Ecol 86:974–982

    Article  Google Scholar 

  • Gratton C, Denno RF (2005) Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis. Restor Ecol 13:358–372

    Article  Google Scholar 

  • Gutierrez JL, Jones CG, Strayer DL, Iribarne O (2003) Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90

    Article  Google Scholar 

  • Hallegraeff GM (1998) Transport of toxic dinoflagellates via ships ballast water: bioeconomic risk assessment and efficacy of possible ballast water management strategies. Mar Ecol Prog Ser 168:297–309

    Article  Google Scholar 

  • Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG, Lambrinos JG, Talley TS, Wilson WG (2007) Ecosystem engineering in space and time. Ecol Lett 10:153–164

    Article  PubMed  Google Scholar 

  • Hedge P, Kriwoken LK (2000) Evidence for effects of Spartina anglica invasion on benthic macrofauna in Little Swanport estuary, Tasmania. Aust Ecol 25:150–159

    Google Scholar 

  • Hewitt CL, Campbell ML, McEnnulty F, Moore KM, Murfet NB, Robertson B, Schaffelke B (2005) Efficacy of physical removal of a marine pest: the introduced kelp Undaria pinnatifida in a Tasmanian Marine Reserve. Biol Invas 7:251–263

    Article  Google Scholar 

  • Holloway MG, Keough MJ (2002) Effects of an introduced polychaete, Sabella spallanzanii, on the development of epifaunal assemblages. Mar Ecol Prog Ser 236:137–154

    Article  Google Scholar 

  • Hopkins CCE (2002) Introduced marine organisms in Norwegian waters, including Svalbard. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 240–252

    Google Scholar 

  • Jones CG, Gutiérrez JL (2007) On the purpose, meaning, and usage of the physical ecosystem engineering concept. In: Cuddington K, Byers JE, Wilson WG, Hastings A (eds) Ecosystem engineers. Plants to protists. Elsevier, San Diego, USA, pp 3–24

    Chapter  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 689: 373–386

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    Google Scholar 

  • Kimmerer WJ, Gartside E, Orsi JJ (1994) Predation by an introduced clam as the likely cause of substantial declines in zooplankton of San Francisco Bay. Mar Ecol Prog Ser 113:81–93

    Article  Google Scholar 

  • Larned ST (2003) Effects of the invasive, nonindigenous seagrass Zostera japonica on nutrient fluxes between the water column and benthos in a NE Pacific estuary. Mar Ecol Prog Ser 254:69–80

    Article  CAS  Google Scholar 

  • Levi F, Francour P (2004) Behavioural response of Mullus surmuletus to habitat modification by the invasive macroalga Caulerpa taxifolia. J Fish Biol 64:55–64

    Article  Google Scholar 

  • Mayer CM, Rudstam LG, Mills EL, Cardiff SG, Bloom CA (2001) Zebra mussels (Dreissena polymorpha), habitat alteration, and yellow perch (Perca flavescens) foraging: system-wide effects on behavioural mechanisms. Can J Fish Aquat Sci 58:2459–2467

    Article  Google Scholar 

  • Meinesz A (1999) Killer algae: the true tale of biological invasion. University of Chicago Press, Chicago

    Google Scholar 

  • Mistri M (2004) Effect of Musculista senhousia mats on clam mortality and growth: much ado about nothing? Aquaculture 241:207–218

    Article  Google Scholar 

  • Nalepa TF, Schloesser SW (1993) Zebra mussels. Biology, impacts, and control. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Neideman R, Wenngren J, Olafsson E (2003) Competition between the introduced polychaete Marenzelleria sp. and the native amphipod Monoporeia affinis in Baltic soft bottoms. Mar Ecol Prog Ser 264:49–55

    Article  Google Scholar 

  • Neira C, Levin LA, Grosholz ED (2005) Benthic macrofaunal communities of three sites in San Francisco Bay invaded by hybrid Spartina, with comparison to uninvaded habitats. Mar Ecol Prog Ser 292:111–126

    Article  CAS  Google Scholar 

  • Newell RIE (1988) Ecological changes in Chesapeake Bay: are they the result of overharvesting the American oyster, Crassostrea virginica. In: Lynch MP, Krome EC (eds) Understanding the estuary: advances in Chesapeake Bay Research. Chesapeake Research Consortium Publication 129, Baltimore, Maryland, pp 536–546

    Google Scholar 

  • Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivavle molluscs: a review. J Shellfish Res 23:51–61

    Google Scholar 

  • Ojaveer H, Leppäkoski E, Olenin S, Ricciardi A (2002) Ecological impact of Ponto-Caspian invaders in the Baltic Sea, European inland waters and the Great Lakes: an inter-ecosystem comparison. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 412–425

    Google Scholar 

  • Olenin S, Leppäkoski E (1999) Non-native animals in the Baltic Sea: alteration of benthic habitats in coastal inlets and lagoons. Hydrobiologia 393:233–243

    Article  Google Scholar 

  • Phelps HL (1994) The Asiatic clam (Corbicula fluminea) invasion and system-level ecological change in the Potomac River Estuary near Washington, D.C. Estuaries 17:614–621

    Article  Google Scholar 

  • Piazzi L, Cinelli F (2000) Effets de l'expansion des Rhodophyceae introduites Acrothamnion preissii et Womersleyella setacea sur les communautes algales des rhizomes de Posidonia ceanica de Metiterranee occidentale. Cryptogamie Algologie 21:291–300

    Article  Google Scholar 

  • Posey M (1988) Community changes associated with the spread of an introduced seagrass, Zostera japonica. Ecology 69:974–983

    Article  Google Scholar 

  • Posey M, Alphin TD, Meyer DL, Johnson JM (2003) Benthic communities of common reed Phragmites australis and marsh cordgrass Spartina alterniflora marshes in Chesapeake Bay.Mar Ecol Prog Ser 261:51–61

    Article  Google Scholar 

  • Power ME (1997) Estimating impacts of a dominant detritivore in a neotropical stream. Trends Ecol Evol 12:47–49

    Article  Google Scholar 

  • Reusch TBH, Williams SL (1998) Variable responses of native eelgrass Zostera marina to a non-indigenous bivalve Musculista senhousia. Oecologia 113:428–441

    Article  Google Scholar 

  • Rudnick DA, Hieb K, Grimmer KF, Resh VH (2003) Patterns and processes of biological invasion: The Chinese mitten crab in San Francisco Bay. Basic Appl Ecol 4:249–262

    Article  Google Scholar 

  • Ruiz GM, Fofonoff P, Hines AH (1999) Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. Limnol Oceanogr 44:950–972

    Google Scholar 

  • Salmon M, Reiners R, Lavin C, Wyneken J (1995) Behavior of loggerhead sea turtles on an urban beach. I. Correlates of nest placement. J Herpetol 29:560–567

    Article  Google Scholar 

  • Sax DF, Kinlan BP, Smith KF (2005) A conceptual framework for comparing species assemblages in native and exotic habitats. Oikos 108:457–464

    Article  Google Scholar 

  • Schwindt E, Bortolus A, Iribarne O (2002) Invasion of a reef-builder polychaete: direct and indirect impacts on the native benthic community structure. Biol Invas 3:137–149

    Article  Google Scholar 

  • Schwindt E, Iribarne OO, Isla FI (2004) Physical effects of an invading reef-building polychaete on an Argentinean estuarine environment. Estuarine Coastal Shelf Sci 59(1):109–120

    Article  Google Scholar 

  • Spencer CN, McClelland BR, Stanford JA (1991) Shrimp stocking, salmon collapse, and eagle displacement. Cascading interactions in the food web of a large aquatic ecosystem. BioScience 41:14–21

    Article  Google Scholar 

  • Staehr PA, Pedersen MF, Thomsen MS, Wernberg T, Krause-Jensen D (2000) Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. Mar Ecol Prog Ser 207:79–88

    Article  Google Scholar 

  • Steneck RS, Carlton JT (2001) Human alterations of marine communities: students beware! In: Bertness M, Gaines S, Hay M (eds) Marine community ecology. Sinauer, Sunderland, MA, pp 455–468

    Google Scholar 

  • Stewart TW, Haynes JM (1994) Benthic macroinvertebrate communities of southwestern Lake Ontario following invasion of Dreissena. J Great Lakes Res 20:479–493

    Article  Google Scholar 

  • Strayer DL, Caraco NF, Cole JJ, Findlay S, Pace ML (1999) Transformation of freshwater ecosystems by bivalves. Bioscience 49:19–27

    Article  Google Scholar 

  • Talley TS, Crooks JA (2007) Habitat conversion associated with bioeroding marine isopods. In: Cuddington K, Byers JE, Wilson WG, Hastings A (eds) Ecosystem engineers. Plants to protists. Elsevier, San Diego, USA, pp 185–202

    Chapter  Google Scholar 

  • Talley TS, Crooks JA, Levin LA (2001) Habitat utilization and alteration by the burrowing isopod Sphaeroma quoyanum in California salt marshes. Mar Biol 138:561–573

    Article  Google Scholar 

  • Thieltges DW (2005) Impact of an invader: epizootic American slipper limpet Crepidula fornicata reduces survival and growth in European mussels. Mar Ecol Prog Ser 286:13–19

    Article  Google Scholar 

  • van den Brink FWB, van der Velde G, bij de Vaate A (1993) Ecological aspects, explosive range extension and impact of a mass invader, Corophium curvispinum Sars, 1895 (Crustacea: Amphipoda), in the Lower Rhine (The Netherlands). Oecologia 93:224–232

    Article  Google Scholar 

  • Van Dolah FM (2000) Marine algal toxins: origins, health effects, and their increased occurrence. Environ Health Perspect 108(Suppl 1):133–141

    Article  PubMed  Google Scholar 

  • Vander Zanden MJ, Casselman JM, Rasmussen JB (1999) Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464–467

    Article  CAS  Google Scholar 

  • Viejo RM (1999) Mobile epifauna inhabiting the invasive Sargassum muticum and two local seaweeds in northern Spain. Aquat Bot 64:131–149

    Article  Google Scholar 

  • Vitousek PM (1990) Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57:7–13

    Article  Google Scholar 

  • Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804

    Article  PubMed  CAS  Google Scholar 

  • Wallentinus I (2002) Introduced marine algae and vascular plants in European aquatic environments. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Distribution, impacts, and management. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 27–52

    Google Scholar 

  • Wallentinus I, Nyberg CD (2005) Introduced marine organisms as habitat modifiers. Mar Pollut Bull 55:323–332

    Article  CAS  Google Scholar 

  • Weis JS, Weis P (2003) Is the invasion of the common reed, Phragmites australis, into tidal marshes of the eastern US an ecological disaster? Mar Pollut Bull 46:816–820

    Article  PubMed  CAS  Google Scholar 

  • Wernberg T, Thomsen MS, Staehr PA, Pedersen MF (2004) Epibiota communities of the introduced and indigenous macroalgal relatives Sargassum muticum and Halidrys siliquosa in Limfjorden (Denmark). Helgol Mar Res 58:154–161

    Article  Google Scholar 

  • Whitcraft CR, Talley DM, Crooks JA, Boland J, Gaskin J (2007) Invasion of tamarisk (Tamarix spp.) in a southern California salt marsh. Biol Invas 9:875–879

    Article  Google Scholar 

  • Wikstrom SA, Kautsky L (2004) Invasion of a habitat-forming seaweed: effects on associated biota. Biol Invas 6:141–150

    Article  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman and Hall, London

    Google Scholar 

  • Wonham MJ, O'Connor M, Harley CDG (2005) Positive effects of a dominant invader on introduced and native mudflat species. Mar Ecol Prog Ser 289:109–116

    Article  Google Scholar 

  • Wright JP, Jones CG, Flecker AS (2002) An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132:96–101

    Article  Google Scholar 

  • Zmudzinski L (1996) The effect of the introduction of the American species Marenzelleria viridis (Polcyhaeta: Spionidae) on the benthic ecosystem of Vistula lagoon. Mar Ecol 17:221–226

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crooks, J.A. (2009). The Role of Exotic Marine Ecosystem Engineers. In: Rilov, G., Crooks, J.A. (eds) Biological Invasions in Marine Ecosystems. Ecological Studies, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79236-9_16

Download citation

Publish with us

Policies and ethics