Skip to main content

Nanomanufacturing Automation

  • Chapter
Book cover Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

  • 20k Accesses

Abstract

This chapter reports the key developments for nanomanufacturing automation. Automated CAD guided nanoassembly can be performed by an improved atomic force microscopy (AFM). Although CAD guided automated manufacturing has been widely studied in the macro-world, nanomanufacturing is challenging. In nanoenvironments, the nanoobjects are usually distributed on a substrate randomly, so the nanoenvironment and the available nanoobjects have to be modeled in order to design a feasible nanostructure. Because of the positioning errors due to the random drift, the actual position of each nanoobject has to be identified by our local scanning method. The advancement of AFM increases the efficiency and accuracy to manipulate and assemble nanoobjects. Besides, the manufacturing process of carbon nanotube (CNT) based nanodevices is discussed. A novel automated manufacturing system has been especially designed for manufacturing nanodevices. The system integrates a new dielectrophoretic (DEP) microchamber into a robotic based deposition workstation and increases the yield to form semi-conducting CNTs for manufacturing nanodevices. Therefore, by using the proposed CNT separation and deposition system, CNT based nanodevices with specific and consistent electronic properties can be manufactured automatically and effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating-current

AFM:

atomic force microscopy

CM:

Clausius–Mossotti

CNT:

carbon nanotube

DC:

direct-current

DEP:

dielectrophoretic

DNA:

deoxyribonucleic acid

IR:

infrared

MEMS:

micro-electromechanical system

MWCNT:

multi-walled carbon nanotube

NEMS:

nanoelectromechanical system

PECVD:

plasma enhanced chemical vapor deposition

SEM:

scanning electron microscopy

SEM:

strategic enterprise management

SWCNT:

single-walled carbon nanotube

UV:

ultraviolet

VOD:

virtual-object-destination

References

  1. G. Binning, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  Google Scholar 

  2. D. Wang, L. Tsau, K.L. Wang, P. Chow: Nanofabrication of thin chromium film deposited on Si(100) surfaces by tip induced anodization in atomic force microscopy, Appl. Phys. Lett. 67, 1295–1297 (1995)

    Article  Google Scholar 

  3. D.M. Schaefer, R. Reifenberger, A. Patil, R.P. Andres: Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope, Appl. Phys. Lett. 66, 1012–1014 (1995)

    Article  Google Scholar 

  4. T. Junno, K. Deppert, L. Montelius, L. Samuelson: Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett. 66(26), 3627–3629 (1995)

    Article  Google Scholar 

  5. P. Avouris, T. Hertel, R. Martel: Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication, Appl. Phys. Lett. 71, 285–287 (1997)

    Article  Google Scholar 

  6. R. Nemutudi, N. Curson, N. Appleyard, D. Ritchie, G. Jones: Modification of a shallow 2DEG by AFM lithography, Solid-State Electron. 57/58, 967–973 (2001)

    Google Scholar 

  7. S.J. Ahn, Y.K. Jang, S.A. Kim, H. Lee, H. Lee: AFM nanolithography on a mixed LB film of hexadecylamine and palmitic acid, Ultramicroscopy 91, 171–176 (2002)

    Article  Google Scholar 

  8. E. Dubois, J.-L. Bubbendorff: Nanometer scale lithography on silicon, titanium and PMMA resist using scanning probe microscopy, Solid-State Electron. 43, 1085–1089 (1999)

    Article  Google Scholar 

  9. M. Sitti, H. Hashimoto: Tele-nanorobotics using atomic force microscope, Proc. IEEE Int. Conf. Intell. Robot. Syst. (Victoria 1998) pp. 1739–1746

    Google Scholar 

  10. M. Guthold, M.R. Falvo, W.G. Matthews, S. Paulson, S. Washburn, D.A. Erie, R. Superfine, F.P. Brooks Jr., R.M. Taylor II: Controlled manipulation of molecular samples with the nanomanipulator, IEEE/ASME Trans. Mechatron. 5(2), 189–198 (2000)

    Article  Google Scholar 

  11. A.A.G. Requicha, C. Baur, A. Bugacov, B.C. Gazen, B. Koel, A. Madhukar, T.R. Ramachandran, R. Resch, P. Will: Nanorobotic assembly of two-dimensional structures, Proc. IEEE Int. Conf. Robot. Autom. (Leuven 1998) pp. 3368–3374

    Google Scholar 

  12. L.T. Hansen, A. Kühle, A.H. Sørensen, J. Bohr, P.E. Lindelof: A technique for positioning nanoparticles using an atomic force microscope, Nanotechnology 9, 337–342 (1998)

    Article  Google Scholar 

  13. G.Y. Li, N. Xi, M. Yu, W.K. Fung: 3-D nanomanipulation using atomic force microscope, Proc. IEEE Int. Conf. Robot. Autom. (Taipei 2003)

    Google Scholar 

  14. G. Li, N. Xi, H. Chen, C. Pomeroy, M. Prokos: Videolized atomic force microscopy for interactive nanomanipulation and nanoassembly, IEEE Trans. Nanotechnol. 4(5), 605–615 (2005)

    Article  Google Scholar 

  15. G. Li, N. Xi, M. Yu, W.-K. Fung: Development of augmented reality system for AFM-based nanomanipulation, IEEE/ASME Trans. Mechatron. 9(2), 358–365 (2004)

    Article  Google Scholar 

  16. H. Chen, N. Xi, G. Li: CAD-guided automated nanoassembly using atomic force microscopy-based nonrobotics, IEEE Trans. Autom. Sci. Eng. 3(3), 208–217 (2006)

    Article  Google Scholar 

  17. H. Chen, N. Xi, W. Sheng, Y. Chen: General framework of optimal tool trajectory planning for free-form surfaces in surface manufacturing, J. Manuf. Sci. Eng. 127(1), 49–59 (2005)

    Article  Google Scholar 

  18. J. Zhang, N. Xi, G. Li, H.-Y. Chan, U.C. Wejinya: Adaptable end effector for atomic force microscopy based nanomanipulation, IEEE Trans. Nanotechnol. 5(6), 628–642 (2006)

    Article  Google Scholar 

  19. A. Javey, J. Guo, D.B. Farmer, Q. Wang, D. Wang, R.G. Gordon, M. Lundstrom, H. Dai: Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics, Nano Lett. 4(3), 447–450 (2004)

    Article  Google Scholar 

  20. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker: Logic circuits with carbon nanotube transistors, Science 294, 1317–1320 (2001)

    Article  Google Scholar 

  21. I.A. Levitsky, W.B. Euler: Photoconductivity of single-walled carbon nanotubes under CW illumination, Appl. Phys. Lett. 83, 1857–1859 (2003)

    Article  Google Scholar 

  22. L. Liu, Y. Zhang: Multi-wall carbon nanotube as a new infrared detected material, Sens. Actuators A 116, 394–397 (2004)

    Article  Google Scholar 

  23. J.A. Misewich, R. Martel, P. Avouris, J.C. Sang, S. Heinze, J. Tersoff: Electrically induced optical emission from a carbon nanotube FET, Science 300, 783–786 (2003)

    Article  Google Scholar 

  24. L. Valentini, I. Armentano, J.M. Kenny, C. Cantanlini, L. Lozzi, S. Santucci: Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films, Appl. Phys. Lett. 82, 4623–4625 (2003)

    Article  Google Scholar 

  25. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai: Nanotube molecular wires as chemical sensors, Science 287, 622–625 (2000)

    Article  Google Scholar 

  26. G.Y. Li, N. Xi, M. Yu, W.K. Fung: Augmented reality system for real-time nanomanipulation, Proc. IEEE Int. Conf. Nanotechnol. (San Francisco 2003)

    Google Scholar 

  27. L. Liu, Y. Luo, N. Xi, Y. Wang, J. Zhang, G. Li: Sensor referenced real-time videolization of atomic force microscopy for nanomanipulations, IEEE/ASME Trans. Mechatron. 13(1), 76–85 (2008)

    Article  Google Scholar 

  28. K.W.C. Lai, N. Xi, C.K.M. Fung, J. Zhang, H. Chen, Y. Luo, U.C. Wejinya: Automated nanomanufacturing system to assemble carbon nanotube based devices, Int. J. Robot. Res. (IJRR) 28(4), 523–536 (2009)

    Article  Google Scholar 

  29. K.W.C. Lai, N. Xi, U.C. Wejinya: Automated process for selection of carbon nanotube by electronic property using dielectrophoretic manipulation, J. Micro-Nano Mechatron. 4(1), 37–48 (2008)

    Article  Google Scholar 

  30. M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam: Sorting carbon nanotubes by electronic structure using density differentiation, Nat. Nanotechnol. 1, 60–65 (2006)

    Article  Google Scholar 

  31. P.G. Collins, M.S. Arnold, P. Avouris: Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 292, 706–709 (2001)

    Article  Google Scholar 

  32. R. Krupke, F. Hennrich, H. von Lohneysen, M.M. Kappes: Separation of metallic from semiconducting single-walled carbon nanotubes, Science 301, 344–347 (2003)

    Article  Google Scholar 

  33. R. Krupke, S. Linden, M. Rapp, F. Hennrich: Thin films of metallic carbon nanotubes prepared by dielectrophoresis, Adv. Mater. 18, 1468–1470 (2006)

    Article  Google Scholar 

  34. M. Yu, M.J. Dyer, G.D. Skidmore, H.W. Rohrs, X. Lu, K.D. Ausman, J.R.V. Ehr, R.S. Ruoff: Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope, Nanotechnology 10, 244–252 (1999)

    Article  Google Scholar 

  35. T. Fukuda, F. Arai, L. Dong: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations, Proc. IEEE 91, 1803–1818 (2003)

    Article  Google Scholar 

  36. N.G. Green, A. Ramos, H. Morgan: AC electrokinetics: a survey of sub-micrometre particle dynamics, J. Phys. D: Appl. Phys. 33, 632–641 (2000)

    Article  Google Scholar 

  37. M. Dimaki, P. Boggild: Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study, Nanotechnology 15, 1095–1102 (2004)

    Article  Google Scholar 

  38. J. Li, Q. Zhang, N. Peng, Q. Zhu: Manipulation of carbon nanotubes using AC dielectrophoresis, Appl. Phys. Lett. 86, 153116–153118 (2005)

    Article  Google Scholar 

  39. A. Subramanian, L.X. Dong, J. Tharian, U. Sennhauser, B.J. Nelson: Batch fabrication of carbon nanotube bearings, Nanotechnology 18, 075703 (2007)

    Article  Google Scholar 

  40. A. Subramanian, T. Choi, L.X. Dong, D. Poulikakos, B.J. Nelson: Batch fabrication of nanotube transducers, Proc. 7th IEEE Conf. Nanotechnol. (IEEE-NANO2007) (Hong Kong 2007)

    Google Scholar 

  41. R. Resch, C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, A.A.G. Requicha, P. Will: Building and manipulating three-dimensional and linked two-dimensional structures of nanoparticles using scanning force microscopy, Langmuir 14(23), 6613–6616 (1998)

    Article  Google Scholar 

  42. J. Israelachvili: Intermolecular and surface forces (Academic Press, London 1991)

    Google Scholar 

  43. G.Y. Li, N. Xi, M. Yu, W.K. Fung: Modeling of 3-D interactive forces in nanomanipulation, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (Las Vegas 2003)

    Google Scholar 

  44. P.M. Garth: Nonlinear programming: Theory, algorithm and applications (Wiley, New York 1983)

    Google Scholar 

  45. M. Avriel: Nonlinear Programming: Analysis and Methods (Prentice Hall, Englewood Cliffs 1976)

    MATH  Google Scholar 

  46. J.C. Giddings: Field-Flow Fractionation: Analysis of macromolecular, colloidal, and particulate materials, Science 260, 1456–1465 (1993)

    Article  Google Scholar 

  47. H. Morgan, N. G. Green: AC Electrokinetics: colloids and nanoparticles (Research Studies Press Ltd. Hertfordshire 2003)

    Google Scholar 

  48. T.B. Jones: Electromechanics of Particles (Cambridge Univ. Press, Cambridge 1995)

    Book  Google Scholar 

  49. Y. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. Wang, E. Yenilmez, Q. Wang, J.F. Gibbons, Y. Nishi, H. Dai: Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method, Nano Lett. 4(2), 317–321 (2004)

    Article  Google Scholar 

  50. J. Zhang, N. Xi, H. Chen, K.W.C. Lai, G. Li: Design, manufacturing and testing of single carbon nanotube based infrared sensors, IEEE Trans. Nanotechnol. 8(2), 245–251 (2009)

    Article  Google Scholar 

  51. J. Zhang, N. Xi, H. Chen, K.W.C. Lai, G. Li: Photovoltaic effect in single carbon nanotube based Schottky diodes, Int. J. Nanopart. 1(2), 108–118 (2008)

    Article  Google Scholar 

  52. J. Zhang, N. Xi, K. Lai: Fabrication and testing of a nano infrared detector using a single carbon nanotube (CNT), SPIE Newsroom (2007), online at: http://spie.org/x8489.xml

  53. J. Zhang, N. Xi, L. Liu, H. Chen, K.W.C. Lai, G. Li: Atomic force yields a master nanomanipulator, IEEE Nanotechnol. Mag. 2(2), 13–17 (2008)

    Article  Google Scholar 

  54. G. Li, N. Xi, D.H. Wang: Probing membrane proteins using atomic force microscopy, J. Cell. Biochem. 97, 1191–1197 (2006)

    Article  Google Scholar 

  55. G. Li, N. Xi, D.H. Wang: Investigation of angiotensin II type 1 receptor by atomic force microscopy with functionalized probe, Nanomed. Nanotechnol. Biol. Med. 1(4), 302–312 (2005)

    Article  MATH  Google Scholar 

  56. G. Li, N. Xi, D.H. Wang: In situ sensing and manipulation of molecules in biological samples using a nano robotic system, Nanomed. Nanotechnol. Biol. Med. 1(1), 31–40 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Xi Dr , King Wai Chiu Lai Dr or Heping Chen PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xi, N., Lai, K.W.C., Chen, H. (2009). Nanomanufacturing Automation. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics