Skip to main content

Ultraviolet (UV) A and (UV) B Phototherapy

  • Chapter
  • 1483 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Krutmann J, Morita A (2003) Therapeutic photomedicine phototherapy. In: Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA, Katz SI (eds) Fitzpatrick's dermatology in general medicine. McGraw Hill, New York

    Google Scholar 

  2. Krutmann J, Morita A, Elmets CA (2001) Mechanism of photo(chemo)therapy. In: Krutmann J, Hönigsmann H, Elmets CA, Bergstresser PR (eds) Dermatological phototherapy and photodiagnostic methods. Springer, New York, p 54

    Chapter  Google Scholar 

  3. Parrish JA, Jaenicke KF (1980) Action spectrum for phototherapy of psoriasis. J Invest Dermatol 76:359–362

    Article  Google Scholar 

  4. Walters IB, Burack LH, Coven TR et al (1999) Suberythe-mogenic narrow-band UVB is markedly more effective than conventional UVB in treatment of psoriasis vulgaris. J Am Acad Dermatol 40:893–900

    Article  PubMed  CAS  Google Scholar 

  5. Ozawa M, Ferenczi K, Kikuchi T et al (1999) 312-nanome-ter ultraviolet B light (narrow-band UVB) induces apopto-sis of T cells within psoriatic lesions. J Exp Med 189:711–718

    Article  PubMed  CAS  Google Scholar 

  6. Shintani Y, Morita A (2008). Narrowband UVB radiation suppresses contact hypersensitivity. Photodermatol Photo-immunol Photomed 24:32–37

    Article  Google Scholar 

  7. Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  PubMed  CAS  Google Scholar 

  8. Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400

    PubMed  CAS  Google Scholar 

  9. Loser K, Mehling A, Loeser S et al (2006) Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 12:1372–1379

    Article  PubMed  CAS  Google Scholar 

  10. Schwarz A, Maeda A, Kernebeck K, van Steeg H, Beissert S, Schwarz T (2005) Preventionof UV radiation-induced immunosuppression by IL-12 is dependent on DNArepair. J Exp Med 201:173–179

    Article  PubMed  CAS  Google Scholar 

  11. Moodycliffe AM, Kimber I, Norval M (1992) The effect of ultraviolet B irradiation and urocanic acid isomers on dendritic cell migration. Immunology 77:394–399

    PubMed  CAS  Google Scholar 

  12. Mizuno K, Okamoto H, Horio T (2004) Ultraviolet B radiation suppresses endocytosis, subsequent maturation, and migration activity of Langerhans cell-like dendritic cells. J Invest Dermatol 122:300–306

    Article  PubMed  CAS  Google Scholar 

  13. Yamazaki S, lyoda T, Tarbell K et al (2003) Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 198:235–247

    Article  PubMed  CAS  Google Scholar 

  14. Ghoreishi M, Dutz JP (2006) Tolerance induction by trans-cutaneous immunization through ultraviolet-irradiated skin is transferable through CD4 + CD25+ T regulatory cells and is dependent on host-derived IL-10. J Immunol 176:2635–2644

    PubMed  CAS  Google Scholar 

  15. Novak Z, Berces A, Konto G et al (2004) Efficacy of differ-enl UV-emitting light sources in the induction of T-cell apoptosis. Photochem Photobiol 79:434–439

    Article  PubMed  CAS  Google Scholar 

  16. George SA, Bilsland DJ, Johnson BE, Ferguson J (1993) Narrow-band (TL-01) UVB air conditioned phototherapy for chronic severe adult atopic dermatitis. Br J Dermatol 128:49–56

    Article  PubMed  CAS  Google Scholar 

  17. Reynolds NJ, Franklin V, Gray JC, Diffey BL, Farr PM (2001) Narrow-band ultraviolet B and broad-band ultraviolet A phototherapy in adult atopic eczema: a randomised controlled trial. Lancet 357:2012–2016

    Article  PubMed  CAS  Google Scholar 

  18. Bonis B, Kemeny L, Dobozu A et al (1997) 308 nm UVB excimer laser for psoriasis. Lancet 350:1522

    Article  PubMed  CAS  Google Scholar 

  19. Aubin F, Vigin M, Puzenat E et al (2005) Evaluation of a novel monochromaticexcimer light delivery system in dermatology: a pilot study in different chronic localized dermatoses. Br J Dermatol 152:99–103

    Article  PubMed  CAS  Google Scholar 

  20. Man I, Crombie IK, Dawe RS et al (2005) The photocarcino-genic risk of narrowband UVB(TL-Ol) phototherapy: early follow-up data. Br J Dermatol 152:755–757

    Article  PubMed  CAS  Google Scholar 

  21. Morita A, Werfel T, Stege H et al (1997) Evidence that singlet oxygen-induced human T helper cell apoptosis is the basic mechanism of ultraviolet-A radiation phototherapy. J Exp Med 186:1763–1768

    Article  PubMed  CAS  Google Scholar 

  22. Krutmann J, Czech W, Dicpgen T et al (1992) High-dose UVA1 therapy in the treatment of patients with atopic dermatitis. J Am Acad Dermatol 26:225–230

    Article  PubMed  CAS  Google Scholar 

  23. Krutmann J, Morita A (2005) Phototherapy for atopic dermatitis. In: Ring J, Ruzicka T, Przybilla B (eds) Handbook of atopic eczema, 2nd edn. Springer, Heidelberg, pp 539–542

    Google Scholar 

  24. Yin L, Morita A, Tsuji T (2003) The crucial role of TGF-beta in the age-related alterations induced by ultraviolet A Irradiation. J Invest Dermatol 120:703–705

    Article  PubMed  CAS  Google Scholar 

  25. Herrmann G, Wlaschek M, Lange TS et al (1993) UVA Irradiation stimulates the synthesis of various matrix metal-loproteinases (MMPs). Exp Dermatol 2:92–97

    Article  PubMed  CAS  Google Scholar 

  26. Yin L, Yamauchi R, Tsuji T, Krutmann J, Morita A (2003) The expression of matrixmetalloproteinase-1 mRNA induced by ultraviolet AI (340–400nm) is phototherapy relevant to the glutathione (GAH) content in skin fibroblasts of systemic sclerosis. J Dermatol 30:173–180

    PubMed  CAS  Google Scholar 

  27. Sakakibara N, Morita A (2008) Ultrastructural changes induced in cutaneous collagen by UVA l and PUVA therapy in systemic sclerosis. J Dermatol 35:63–69

    Article  PubMed  Google Scholar 

  28. Chizzolini C, Rezzonico R, Ribbens C et al (1998) Inhibition of type I collagen production by dermal fibroblasts upon contact with activated T cells: different sensitivity to inhibition between systemic sclerosis and control fibroblast. Arthritis Rheum 41:2039–2047

    Article  PubMed  CAS  Google Scholar 

  29. Scharffetter K, Wlaschek M, Hogg A et al (1999) U VA irradiation induces collagenase in human dermal fibroblasts in vitro and in vivo. Arch Dermatol Res 283:506–511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akimichi Morita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morita, A. (2010). Ultraviolet (UV) A and (UV) B Phototherapy. In: Krieg, T., Bickers, D.R., Miyachi, Y. (eds) Therapy of Skin Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78814-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78814-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78813-3

  • Online ISBN: 978-3-540-78814-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics