Skip to main content

Methanogens and Methanogenesis in Hypersaline Environments

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Methanogenesis in hypersaline environments is determined by redox potential and permanency of anaerobic conditions, and by the concentration of other terminal electron acceptors, particularly sulfate, because sulfate-reducing bacteria have a greater affinity than methanogens for competitive substrates like hydrogen and acetate. Hypersalinity, however, is not an obstacle to methanogenesis; in many cases it provides higher concentrations of non-competitive substrates like methylamines, which derive from compatible solutes such as glycine-betaine that is synthesized by many microbes inhabiting hypersaline environments. Also, depletion of sulfate, as may occur in deeper sediments, allows increased methanogenesis. On the other hand, increasing salinity requires methanogens to synthesize or take up more compatible solutes at a significant energetic cost. Aceticlastic and hydrogenotrophic methanogens, with their lower energetic yields, are therefore more susceptible than methylotrophic methanogenesis, which further explains the predominance of methylotrophic methanogens like Methanohalophilus spp. in hypersaline environments. There are often deviations from the picture outlined above, which are sometimes difficult to explain. Identifying the role of uncultivated Euryarchaeota in hypersaline environments, elucidating the effects of different ions (which have differential stress effects and potential as electron acceptors) and understanding the effects of salinity on all microbes involved in methane cycling, will help us to understand and predict methane production in hypersaline environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boone DR, Mathrani IM, Liu Y, Menaia JAGF, Mah RA, Boone JE (1993) Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int J Syst Bacteriol 43: 430–437.

    Article  Google Scholar 

  • Boone DR (2001) Genus IV Methanohalophilus. In Bergey’s Manual of Systematic Bacteriology 2nd edn. vol. 1: The Archaea and the Deeply Branching and Phototrophic Bacteria. Garrity GM (ed.). New York: Springer, 281–283.

    Google Scholar 

  • Bräuer SL, Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2006) Isolation of a novel acidophilic methanogen from a peat bog. Nature 442: 192–194.

    Article  PubMed  Google Scholar 

  • Buckley DH, Baumgartner LK, Visscher PT (2008) Vertical distribution of methane metabolism in microbial mats of the Great Sippewissett salt marsh. Environ Microbiol 10: 967–977.

    Article  PubMed  CAS  Google Scholar 

  • Carini S, Bano N, LeCleir G, Joye SB (2005) Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environ Microbiol 7: 1127–1138.

    Article  PubMed  CAS  Google Scholar 

  • Charlou JL, Donval JP, Zitter T, Roy N, Jean-Baptiste P, Foucher JP, Woodside J (2003) Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep-Sea Res Pt I 50: 941–958.

    Article  CAS  Google Scholar 

  • Conrad R, Frenzel P, Cohen Y (1995) Methane emission from hypersaline microbial mats – lack of aerobic methane oxidation activity. FEMS Microbiol Ecol 16: 297–305.

    Article  CAS  Google Scholar 

  • Cytryn E, Minz D, Oremland RS, Cohen Y (2000) Distribution and diversity of archaea corresponding to the limnological cycle of a hypersaline stratified lake (Solar Lake, Sinai, Egypt). Appl Environ Microbiol 66: 3269–3276.

    Article  PubMed  CAS  Google Scholar 

  • Daffonchio D, Borin S, Brusa T, Brusetti L, van der Wielen PWJJ, Bolhuis H, D’Auria G, Yakimov M, Giuliano L, Tamburini C, Marty D, McGenity TJ, Hallsworth JE, Sass AM, Timmis KN, Tselepides A, de Lange GJ, Huebner A, Thomson J, Varnavas SP, Gasparoni F, Gerber HW, Malinverno E, Corselli C, (2006) Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 440: 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Davidova IA, Harmsen HJM, Stams AJM, Belyaev SS, Zehnder AJB (1997) Taxonomic description of Methanococcoides euhalobius and its transfer to the Methanohalophilus genus. Antonie van Leeuwenhoek 71: 313–318.

    Article  PubMed  CAS  Google Scholar 

  • Dong HL, Zhang GX, Jiang HC, Yu BS, Chapman LR, Lucas CR, Fields MW (2006) Microbial diversity in sediments of saline Qinghai Lake, China: Linking geochemical controls to microbial ecology. Microbial Ecol 51: 65–82.

    Article  CAS  Google Scholar 

  • Eder W, Schmidt M, Koch M, Garbe-Schonberg D, Huber R (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4: 758–763.

    Article  PubMed  CAS  Google Scholar 

  • Giani D, Jannsen D, Schostak V, Krumbein WE (1989) Methanogens in a saltern in the Bretagne (France). FEMS Microbiol Ecol 62: 143–150.

    Article  CAS  Google Scholar 

  • Grant WD, Tindall BJ (1986) The alkaline saline environment. In Microbes in Extreme Environments. RA Herbert and GA. Codd (eds.). London: Academic Press, 25–54.

    Google Scholar 

  • Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D'Auria G, de Lima Alves F, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9: 801–813.

    Article  PubMed  CAS  Google Scholar 

  • Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55: 1817–1826.

    Article  CAS  Google Scholar 

  • Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412: 324–327.

    Article  PubMed  CAS  Google Scholar 

  • Hovorka S (1987) Depositional environments of marine-dominated bedded halite, Permian San Andres Formation, Texas. Sedimentology 34: 1029–1054.

    Article  Google Scholar 

  • Hsü KJ, Ryan WBF, Cita MB (1973) Late Miocene desiccation of the Mediterranaean. Nature 242: 240–244.

    Article  Google Scholar 

  • Iversen N, Oremland RS, Klug MJ (1987) Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation. Limnol Oceanogr 32: 804–814.

    Article  CAS  Google Scholar 

  • Jahnke LL, Orphan VJ, Embaye T, Turk KA, Kubo M, Summons RE, Des Marais DJ (2008) Lipid biomarker and phylogenetic analyses to reveal archaeal biodiversity and distribution in a hypersaline microbial mat and underlying sediment. Geobiology 6: 394–410.

    Article  PubMed  CAS  Google Scholar 

  • Jiang HC, Dong HL, Zhang GX, Yu BS, Chapman LR, Fields MW (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 72: 3832–3845.

    Article  PubMed  CAS  Google Scholar 

  • Joye SB, Connell TL, Miller LG, Oremland RS, Jellison RS (1999) Oxidation of ammonia and methane in an alkaline, saline lake. Limnol Oceanogr 44: 178–188.

    Article  CAS  Google Scholar 

  • Joye SB, MacDonald IR, Montoya JP, Peccini M (2005) Geophysical and geochemical signatures of Gulf of Mexico seafloor brines. Biogeosciences 2: 295–309.

    Article  CAS  Google Scholar 

  • Kiene RP, Visscher PT (1987) Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl Environ Microbiol 53: 2426–2434.

    PubMed  CAS  Google Scholar 

  • Kiene RP, Oremland RS, Catena A, Miller LG, Capone DG (1986) Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol 52: 1037–1045.

    PubMed  CAS  Google Scholar 

  • King GM (1988) Methanogenesis from methylated amines in a hypersaline algal mat. Appl Environ Microbiol 54: 130–136.

    PubMed  CAS  Google Scholar 

  • Krumgalz BS, Millero FJ (1982) Physico-chemical study of the Dead Sea waters. I. Activity coefficients of major ions in Dead Sea water. Mar Chem 11: 209–222.

    Article  CAS  Google Scholar 

  • Kulp TR, Han S, Saltikov CW, Lanoil BD, Zargar K, Oremland RS (2007) Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes. Appl Environ Microbiol 73: 5130–5137.

    Article  PubMed  CAS  Google Scholar 

  • Lai M-C, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP (1991) Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173: 5352–5358.

    PubMed  CAS  Google Scholar 

  • Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72: 3685–3695.

    Article  PubMed  CAS  Google Scholar 

  • Lin JL, Joye SB, Scholten JCM, Schafer H, McDonald IR, Murrell JC (2005) Analysis of methane monooxygenase genes in Mono Lake suggests that increased methane oxidation activity may correlate with a change in methanotroph community structure. Appl Environ Microbiol 71: 6458–6462.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Boone DR, Chay C (1990) Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int J Syst Bacteriol 40: 111–116.

    Article  Google Scholar 

  • Lloyd KG, Lapham L, Teske A (2006) An anerobic methane-oxidizing community of ANME-1b Archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72: 7218–7230.

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Dwyer DF, Klug MJ (1982) Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl Environ Microbiol 45: 187–192.

    Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104: 11436–11440.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald IR, Reilly JF, Guinasso NL, Brooks JM, Carney RS, Bryant WA, Bright TJ (1990) Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico. Science 248: 1096–1099.

    Article  PubMed  CAS  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2: 243–250.

    Article  PubMed  CAS  Google Scholar 

  • McGenity TJ, Hallsworth JE, Timmis KN (2008) Connectivity between ‘ancient’ and ‘modern’ hypersaline environments, and the salinity limits of life. In: CIESM Workshop Monographs n°33: The Messinian Salinity Crisis from mega-deposits to microbiology – A consensus report. Almeria (Spain), 7–10 November 2007, 115–120.

    Google Scholar 

  • Martens CS, Chanton JP, Paull CK (1991) Biogenic methane from abyssal brine seeps at the base of the Florida escarpment. Geology 19: 851–854.

    Article  CAS  Google Scholar 

  • Marvin diPasquale M, Oren A, Cohen Y, Oremland RS (1999) Radiotracer studies of bacterial methanogenesis in sediments from the Dead Sea and Solar Lake (Sinai). In Microbiology and Biogeochemistry of Hypersaline Environments. A Oren (ed.). Boca Raton FL: CRC Press, 149–160.

    Google Scholar 

  • Mathrani IM, Boone DR, Mah RA, Fox GE, Lau PP (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38: 139–142.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis WA, Jenisch A, Richnow HH (1990) Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban Deeps. Appl Geochem 5: 103–114.

    Article  CAS  Google Scholar 

  • Mouné S, Caumette P, Matheron R, Willison JC (2003) Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44: 117–130.

    Article  PubMed  Google Scholar 

  • Nakatsugawa N (1991) Novel methanogenic archaebacteria which grow in extreme environments. In Superbugs: Microorganisms in Extreme Environments. K Horikoshi and WD Grant (eds.). Berlin: Japan Scientific Societies Press, Tokyo, 212–220.

    Google Scholar 

  • Namsaraev BB, Zhilina TN, Kulyrova AV, Gorlenko VM (1999) Bacterial methanogenesis in soda lakes of the southeastern Transbaikal region. Microbiology (Russia) 68: 586–591.

    CAS  Google Scholar 

  • Obraztsova AJ, Shipin OV, Bezrukova LV, Beliaev SS (1988) Properties of the coccoid methylotrophic methanogen, Methanococcoides euhalobius sp. nov. Microbiology 56: 523–527.

    Google Scholar 

  • Ollivier B, Caumette P, Garcia, JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58: 27–38.

    PubMed  CAS  Google Scholar 

  • Ollivier B, Cayol JL, Patel BKC, Magot M, Fardeau ML, Garcia JL (1997) Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147: 51–56.

    Article  PubMed  CAS  Google Scholar 

  • Ollivier B, Fardeau ML, Cayol JL, Magot M, Patel BKC, Prensier G, Garcia JL (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48: 821–828.

    Article  PubMed  Google Scholar 

  • Oremland RS, Marsh LM, Polcin S (1982) Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature 296: 143–145.

    Article  CAS  Google Scholar 

  • Oremland RS, King GM (1989) Methanogenesis in hypersaline environments. In Microbial Mats: Physiological Ecology of Benthic Microbial Communities. Y Cohen and E Rosenberg (eds.). Washington, DC: American Society for Microbiology, 180–190.

    Google Scholar 

  • Oren A (1990) Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments. Antonie van Leeuwenhoek 58: 291–298.

    Article  PubMed  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63: 334–348.

    PubMed  CAS  Google Scholar 

  • Oren A (2002) Halophilic Organisms and their Environments. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Sal Syst 4: 2.

    Google Scholar 

  • Orphan VJ, Jahnke LL, Embaye T, Turk KA, Pernthaler A, Summons RE, Des Marais DJ (2008) Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Geobiology 6: 376–393.

    Article  PubMed  CAS  Google Scholar 

  • Paterek JR, Smith PH (1988) Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int J Syst Bacteriol 38: 122–123.

    Article  Google Scholar 

  • Paull CK, Jull AJT, Toolin LJ, Linick T (1985) Stable isotope evidence for chemosynthesis in an abyssal seep community. Nature 317: 709–711.

    Article  CAS  Google Scholar 

  • Pérez-Fillol M, Rodriquez-Valera F, Ferry JG (1985) Isolation of methanogenic bacteria able to grow in high salt concentration. Microbiología SEM 1: 29–33.

    Google Scholar 

  • Perreault NN, Andersen DT, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian High Arctic. Appl Environ Microbiol 73: 1532–1543.

    Article  PubMed  CAS  Google Scholar 

  • Pironon J, Pagel M, Lévêque MH, Mogé M (1995a) Organic inclusions in salt. Part 1. Solid and liquid organic matter, carbon dioxide and nitrogen species in fluid inclusions from the Bresse Basin (France). Org Geochem 23: 391–402.

    Article  CAS  Google Scholar 

  • Pironon J, Pagel M, Walgenwitz F, Barrès O (1995b) Organic inclusions in salt. Part 2. Oil, gas and ammonium in inclusions from the Gabon margin. Org Geochem 23: 739–750.

    Article  CAS  Google Scholar 

  • Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Sal Syst 1: 5

    Article  Google Scholar 

  • Roedder E (1984) The fluids in salt. Am Mineral 69: 413–439.

    CAS  Google Scholar 

  • Skyring GW, Lynch RM, Smith GD (1989) Quantitative relationships between carbon, hydrogen, and sulphur metabolism in cyanobacterial mats. In Microbial Mats: Physiological Ecology of Benthic Microbial Communities. Y Cohen and E Rosenberg (eds.). Washington, DC: American Society for Microbiology, 170–179.

    Google Scholar 

  • Shih C-J, Lai M-C (2007) Analysis of the AAA+ chaperone clpB gene and stress-response expression in the halophilic methanogenic archaeon Methanohalophilus portucalensis. Microbiology 153: 2572–2583.

    Article  PubMed  CAS  Google Scholar 

  • Smith JM, Green SJ, Kelley CA, Prufert-Bebout L, Bebout BM (2008) Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat. Environ Microbiol 10: 386–394.

    Article  PubMed  CAS  Google Scholar 

  • Sokolov AP, Trotsenko YA (1995) Methane consumption in (hyper)saline habitats of Crimea (Ukraine). FEMS Microbiol Ecol 18: 299–304.

    Article  CAS  Google Scholar 

  • Sørensen KB, Canfield DE, Oren A (2004) Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl Environ Microbiol 70: 1608–1616.

    Article  PubMed  Google Scholar 

  • van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307: 121–123.

    Article  PubMed  Google Scholar 

  • van Leerdam RC, Bonilla-Salinas M, de Bok FAM, Bruning H, Lens PNL, Stams AJM, Janssen AJH (2008) Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for Liquefied Petroleum Gas (LPG) desulfurization. Biotechnol Bioeng 101: 691–701.

    Article  PubMed  CAS  Google Scholar 

  • Waldron PJ, Petsch ST, Martini AM, Nuslein K (2007) Salinity constraints on subsurface archaeal diversity and methanogenesis in sedimentary rock rich in organic matter. Appl Environ Microbiol 73: 4171–4179.

    Article  PubMed  CAS  Google Scholar 

  • Walsh DA, Papke RT, Doolittle WF (2005) Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7: 1655–1666.

    Article  PubMed  CAS  Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24: 263–290.

    Article  PubMed  CAS  Google Scholar 

  • Wilms R, Sass H, Köpke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59: 611–621.

    Article  PubMed  CAS  Google Scholar 

  • Winfrey MR and Ward DM (1983) Substrates for sulphate reduction and methane production in hypersaline sediments. Appl Environ Microbiol 45: 193–199.

    PubMed  CAS  Google Scholar 

  • Yakimov MM, Giuliano L, Cappello S, Denaro R, Golyshin PN (2007a) Microbial community of a hydrothermal mud vent underneath the deep-sea anoxic brine lake Urania (Eastern Mediterranean). Origins Life Evol B 37: 177–188.

    Article  Google Scholar 

  • Yakimov MM, La Cono V, Denaro R, D’Auria G, Decembrini F, Timmis KN, Golyshin PN, Giuliano L (2007b) Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J 1: 743–755.

    Article  PubMed  CAS  Google Scholar 

  • Yu IK, Kawamura F (1987) Halomethanococcus doii gen. nov., sp. nov.: an obligate halophilic methanogenic bacterium from solar salt ponds. J Gen Appl Microbiol 33: 303–310.

    Article  CAS  Google Scholar 

  • Zavarzin GA, Zhilina TN, Pikuta EV (1996) Secondary anaerobes in haloalkaliphilic communities in lakes of Tuva. Microbiology (Russia) 65: 480–486.

    Google Scholar 

  • Zharkov MA (1981) History of Paleozoic Salt. Berlin: Springer.

    Google Scholar 

  • Zhilina TN (1983) New obligate halophilic methane-producing bacterium. Microbiology 52: 290–297.

    Google Scholar 

  • Zhilina TN (2001) Genus III Methanohalobium. In Bergey’s Manual of Systematic Bacteriology 2nd edn. vol. 1: The Archaea and the Deeply Branching and Phototrophic Bacteria. GM Garrity (ed.). New York: Springer, 279–281.

    Google Scholar 

  • Zhilina TN, Zavarzin GA (1987) Methanohalobium evestigatum gen. nov., sp. nov., extremely halophilic methane-producing archaebacteria. Dokl Akad Nauk SSSR 293: 464–468.

    CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA (1990) Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol Rev 87: 315–322.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

McGenity, T.J. (2010). Methanogens and Methanogenesis in Hypersaline Environments. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_53

Download citation

Publish with us

Policies and ethics