Skip to main content

Phage Peptide Display

  • Chapter
Molecular Imaging II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 185/2))

Abstract

Molecular imaging is at the forefront in the advancement of in-vivo diagnosis and monitoring of cancer. New peptide-based molecular probes to facilitate cancer detection are rapidly evolving. Peptide-based molecular probes that target apoptosis, angiogenesis, cell signaling and cell adhesion events are in place. Bacteriophage (phage) display technology, a molecular genetic approach to ligand discovery, is commonly employed to identify peptides as tumor-targeting molecules. The peptide itself may perhaps have functional properties that diminish tumor growth or metastasis. More often, a selected peptide is chemically synthesized, coupled to a radiotracer or fluorescent probe, and utilized in the development of new noninvasive molecular imaging probes. A myriad of peptides that bind cancer cells and cancer-associated antigens have been reported from phage library selections. Phage selections have also been performed in live animals to obtain peptides with optimal stability and targeting properties in vivo. To this point, few in-vitro, in-situ, or in-vivo selected peptides have shown success in the molecular imaging of cancer, the notable exception being vascular targeting peptides identified via in-vivo selections. The success of vasculature targeting peptides, such as those with an RGD motif that bind αvβ3integrin, may be due to the abundance and expression patterns of integrins in tumors and supporting vasculature. The discovery of molecular probes that bind tumor-specific antigens has lagged considerably. One promising means to expedite discovery is through the implementation of selected phage themselves as tumor-imaging agents in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aina OH, Sroka TC, Chen ML, Lam KS (2002) Therapeutic cancer targeting peptides. Biopolymers 66:184–199

    PubMed  CAS  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    PubMed  CAS  Google Scholar 

  • Arap W, Haedicke W, Bernasconi M, Kain R, Rajotte D, Krajewski S, Ellerby HM, Bredesen DE, Pasqualini R, Ruoslahti E (2002a) Targeting the prostate for destruction through a vascular address. ProcNatl Acad Sci USA 99:1527–1531

    CAS  Google Scholar 

  • Arap W, Kolonin M, Trepel M, Lahdenranta J, Cardo-Vila M, Giordano RJ, Mintz PJ, Ardelt PU, Yao VJ, Vidal CI, Chen L, Flamm A, Valtanen H, Weavind LM, Hicks ME, Pollock RE, Botz GH, Bucana CD, Koivunen E, Cahill D, Troncoso P, Baggerly KA, Pentz RD, Do KA, Logothetis CJ, Pasqualini R (2002b) Steps toward mapping the human vasculature by phage display. Nat Med 8:121–127

    PubMed  CAS  Google Scholar 

  • Arap MA, Lahdenranta J, Mintz PJ, Hajitou A, Sarkis AS, Arap W, Pasqualini R (2004) Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6:275–284

    PubMed  CAS  Google Scholar 

  • Askoxylakis V, Zitzmann S, Mier W, Graham K, Kramer S, von Wegner F, Fink RH, Schwab M, Eisenhut M, Haberkorn U (2005) Preclinical evaluation of the breast cancer cell-binding peptide, p160. Clin Cancer Res 11:6705–6712

    PubMed  CAS  Google Scholar 

  • Askoxylakis V, Mier W, Zitzmann S, Ehemann V, Zhang J, Kramer S, Beck C, Schwab M, Eisenhut M, Haberkorn U (2006) Characterization and development of a peptide (p160) with affinity for neuroblastoma cells. J Nucl Med 47:981–988

    PubMed  CAS  Google Scholar 

  • Atwell S, Wells JA (1999) Selection for improved subtiligases by phage display. Proc Natl Acad Sci USA 96:9497–9502

    PubMed  CAS  Google Scholar 

  • Bakker WH, Krenning EP, Reubi JC, Breeman WA, Setyono-Han B, de Jong M, Kooij PP, Bruns C, van Hagen PM, Marbach P et al (1991) In vivo application of [111In-DTPA-D-Phe1]-octreotide for detection of somatostatin receptor-positive tumors in rats. Life Sci 49:1593–1601

    PubMed  CAS  Google Scholar 

  • Barbas CF 3rd, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA 88:7978–7982

    PubMed  CAS  Google Scholar 

  • Behr TM, Gotthardt M, Barth A, Behe M (2001) Imaging tumors with peptide-based radioligands. Q J Nucl Med 45:189–200

    PubMed  CAS  Google Scholar 

  • Binetruy-Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, Kraemer M, Plouet J, Derbin C, Perret G, Mazie JC (2000) Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 19:1525–1533

    PubMed  CAS  Google Scholar 

  • Bockmann M, Drosten M, Putzer BM (2005) Discovery of targeting peptides for selective therapy of medullary thyroid carcinoma. J Gene Med 7:179–188

    PubMed  Google Scholar 

  • Brown KC (2000) New approaches for cell-specific targeting: identification of cell-selective peptides from combinatorial libraries. Curr Opin Chem Biol 4:16–21

    PubMed  CAS  Google Scholar 

  • Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676

    PubMed  CAS  Google Scholar 

  • Chen J, Cheng Z, Hoffman TJ, Jurisson SS, Quinn TP (2000) Melanoma-targeting properties of (99m)technetium-labeled cyclic alpha-melanocyte-stimulating hormone peptide analogues. Cancer Res 60:5649–5658

    PubMed  CAS  Google Scholar 

  • Chen J, Tung CH, Allport JR, Chen S, Weissleder R, Huang PL (2005a) Near-infrared fluorescent imaging of matrix metalloproteinase activity after myocardial infarction. Circulation 111:1800–1805

    PubMed  CAS  Google Scholar 

  • Chen L, Zurita AJ, Ardelt PU, Giordano RJ, Arap W, Pasqualini R (2004) Design and validation of a bifunctional ligand display system for receptor targeting. Chem Biol 11:1081–1091

    PubMed  CAS  Google Scholar 

  • Chen X, Sievers E, Hou Y, Park R, Tohme M, Bart R, Bremner R, Bading JR, Conti PS (2005b) Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia 7:271–9

    PubMed  CAS  Google Scholar 

  • Cheng Z, Wu Y, Xiong Z, Gambhir SS, Chen X (2005) Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice. Bioconjug Chem 16:1433–1441

    PubMed  CAS  Google Scholar 

  • Crameri R, Kodzius R (2001) The powerful combination of phage surface display of cDNA libraries and high throughput screening. Comb Chem High Throughput Screen 4:145–155

    PubMed  CAS  Google Scholar 

  • Ding H, Prodinger WM, Kopecek J (2006) Identification of CD21-binding peptides with phage display and investigation of binding properties of HPMA copolymer-peptide conjugates. Bioconjug Chem 17:514–523

    PubMed  CAS  Google Scholar 

  • Du B, Qian M, Zhou Z, Wang P, Wang L, Zhang X, Wu M, Zhang P, Mei B (2006) In vitro panning of a targeting peptide to hepatocarcinoma from a phage display peptide library. Biochem Biophys Res Commun 342:956–962

    PubMed  CAS  Google Scholar 

  • Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci USA 103:4841–4845

    PubMed  CAS  Google Scholar 

  • Fan H, Duan Y, Zhou H, Li W, Li F, Guo L, Roeske RW (2002) Selection of peptide ligands binding to fibroblast growth factor receptor 1. IUBMB Life 54:67–72

    PubMed  CAS  Google Scholar 

  • Fleming TJ, Sachdeva M, Delic M, Beltzer J, Wescott CR, Devlin M, Lander RC, Nixon AE, Roschke V, Hilbert DM, Sexton DJ (2005) Discovery of high-affinity peptide binders to BLyS by phage display. J Mol Recognit 18:94–102

    PubMed  CAS  Google Scholar 

  • Fong S, Doyle MV, Goodson RJ, Drummond RJ, Stratton JR, McGuire L, Doyle LV, Chapman HA, Rosenberg S (2002) Random peptide bacteriophage display as a probe for urokinase receptor ligands. Biol Chem 383:149–158

    PubMed  CAS  Google Scholar 

  • Fukuda MN, Ohyama C, Lowitz K, Matsuo O, Pasqualini R, Ruoslahti E, Fukuda M (2000) A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res 60:450–456

    PubMed  CAS  Google Scholar 

  • Funovics M, Montet X, Reynolds F, Weissleder R, Josephson L (2005) Nanoparticles for the optical imaging of tumor E-selectin. Neoplasia 7:904–911

    PubMed  CAS  Google Scholar 

  • Giordano RJ, Cardo-Vila M, Lahdenranta J, Pasqualini R, Arap W (2001) Biopanning and rapid analysis of selective interactive ligands. Nat Med 7:1249–1253

    PubMed  CAS  Google Scholar 

  • Glinsky VV, Huflejt ME, Glinsky GV, Deutscher SL, Quinn TP (2000) Effects of Thomsen-Friedenreich antigen-specific peptide P-30 on beta-galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells. Cancer Res 60:2584–2588

    PubMed  CAS  Google Scholar 

  • Glinsky VV, Glinsky GV, Rittenhouse-Olson K, Huflejt ME, Glinskii OV, Deutscher SL, Quinn TP (2001) The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 61:4851–4857

    PubMed  CAS  Google Scholar 

  • Goldenberg DM (2002) Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med 43:693–713

    PubMed  CAS  Google Scholar 

  • Goldenberg MM (1999) Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 21:309–318

    PubMed  CAS  Google Scholar 

  • Goodson RJ, Doyle MV, Kaufman SE, Rosenberg S (1994) High-affinity urokinase receptor antagonists identified with bacteriophage peptide display. Proc Natl Acad Sci US A 91:7129–7133

    CAS  Google Scholar 

  • Hajitou A, Trepel M, Lilley CE, Soghomonyan S, Alauddin MM, Marini FC, 3rd, Restel BH, Ozawa MG, Moya CA, Rangel R, Sun Y, Zaoui K, Schmidt M, von Kalle C, Weitzman MD, Gelovani JG, Pasqualini R, Arap W (2006) A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 125:385–398

    PubMed  CAS  Google Scholar 

  • Haubner R, Wester HJ (2004) Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 10:1439–1455

    PubMed  CAS  Google Scholar 

  • Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, Kessler H, Schwaiger M (2001) Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336

    PubMed  CAS  Google Scholar 

  • Heppeler A, Froidevaux S, Eberle AN, Maecke HR (2000) Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 7:971–994

    PubMed  CAS  Google Scholar 

  • Hetian L, Ping A, Shumei S, Xiaoying L, Luowen H, Jian W, Lin M, Meisheng L, Junshan Y, Chengchao S (2002) A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor. J Biol Chem 277:43137-43142

    PubMed  Google Scholar 

  • Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354:84–86

    PubMed  CAS  Google Scholar 

  • Houimel M, Schneider P, Terskikh A, Mach JP (2001) Selection of peptides and synthesis of pentameric peptabody molecules reacting specifically with ErbB-2 receptor. Int J Cancer 92: 748–755

    PubMed  CAS  Google Scholar 

  • Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, Rajopadhye M, Boonstra H, Corstens FH, Boerman OC (2002) Tumor targeting with radiolabeled alpha(v) beta(3) integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151

    PubMed  CAS  Google Scholar 

  • Jaye DL, Nolte FS, Mazzucchelli L, Geigerman C, Akyildiz A, Parkos CA (2003) Use of real-time polymerase chain reaction to identify cell- and tissue-type-selective peptides by phage display. Am J Pathol 162:1419–1429

    PubMed  CAS  Google Scholar 

  • Jaye DL, Geigerman CM, Fuller RE, Akyildiz A, Parkos CA (2004) Direct fluorochrome labeling of phage display library clones for studying binding specificities: applications in flow cytometry and fluorescence microscopy. J Immunol Methods 295:119–127

    PubMed  CAS  Google Scholar 

  • Karasseva N, Glinsky VV, Chen NX, Komatireddy R, Quinn TP (2002) Identification and characterization of peptides that bind human ErbB-2 selected from a bacteriophage display library. J Protein Chem 21:287–296

    PubMed  CAS  Google Scholar 

  • Ke SH, Coombs GS, Tachias K, Corey DR, Madison EL (1997) Optimal subsite occupancy and design of a selective inhibitor of urokinase. J Biol Chem 272:20456–20462

    PubMed  CAS  Google Scholar 

  • Kelly KA, Jones DA (2003) Isolation of a colon tumor specific binding peptide using phage display selection. Neoplasia 5:437–444

    PubMed  CAS  Google Scholar 

  • Kelly K, Alencar H, Funovics M, Mahmood U, Weissleder R (2004) Detection of invasive colon cancer using a novel, targeted, library-derived fluorescent peptide. Cancer Res 64:6247–6251

    PubMed  CAS  Google Scholar 

  • Kelly KA, Clemons PA, Yu AM, Weissleder R (2006a) High-throughput identification of phage-derived imaging agents. Mol Imaging 5:24–30

    PubMed  Google Scholar 

  • Kelly KA, Nahrendorf M, Yu AM, Reynolds F, Weissleder R (2006b) In vivo phage display selection yields atherosclerotic plaque targeted peptides for imaging. Mol Imaging Biol 8:201–207

    PubMed  Google Scholar 

  • Kennel SJ, Mirzadeh S, Hurst GB, Foote LJ, Lankford TK, Glowienka KA, Chappell LL, Kelso JR, Davern SM, Safavy A, Brechbiel MW (2000) Labeling and distribution of linear peptides identified using in vivo phage display selection for tumors. Nucl Med Biol 27:815–825

    PubMed  CAS  Google Scholar 

  • Kim JW, Wang XW (2003) Gene expression profiling of preneoplastic liver disease and liver cancer: a new era for improved early detection and treatment of these deadly diseases? Carcinogenesis 24:363–369

    PubMed  CAS  Google Scholar 

  • Kim Y, Lillo AM, Steiniger SC, Liu Y, Ballatore C, Anichini A, Mortarini R, Kaufmann GF, Zhou B, Felding-Habermann B, Janda KD (2006) Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry 45:9434–9444

    PubMed  CAS  Google Scholar 

  • Koivunen E, Arap W, Rajotte D, Lahdenranta J, Pasqualini R (1999) Identification of receptor ligands with phage display peptide libraries. J Nucl Medi 40:883–888

    CAS  Google Scholar 

  • Kolonin M, Pasqualini R, Arap W (2001) Molecular addresses in blood vessels as targets for therapy. Curr Opin Chem Biol 5:308–313

    PubMed  CAS  Google Scholar 

  • Kolonin MG, Bover L, Sun J, Zurita AJ, Do KA, Lahdenranta J, Cardo-Vila M, Giordano RJ, Jaalouk DE, Ozawa MG, Moya CA, Souza GR, Staquicini FI, Kunyiasu A, Scudiero DA, Holbeck SL, Sausville EA, Arap W, Pasqualini R (2006) Ligand-directed surface profiling of human cancer cells with combinatorial peptide libraries. Cancer Res 66:34–40

    PubMed  CAS  Google Scholar 

  • Koolpe M, Dail M, Pasquale EB (2002) An ephrin mimetic peptide that selectively targets the EphA2 receptor. J Biol Chem 277:46974–46979

    PubMed  CAS  Google Scholar 

  • Koolpe M, Burgess R, Dail M, Pasquale EB (2005) EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J Biol Chem 280: 17301–17311

    PubMed  CAS  Google Scholar 

  • Kridel SJ, Chen E, Kotra LP, Howard EW, Mobashery S, Smith JW (2001) Substrate hydrolysis by matrix metalloproteinase-9. J Biol Chem 276:20572–20578

    PubMed  CAS  Google Scholar 

  • Kuhnast B, Bodenstein C, Haubner R, Wester HJ, Senekowitsch-Schmidtke R, Schwaiger M, Weber WA (2004) Targeting of gelatinase activity with a radiolabeled cyclic HWGF peptide. Nucl Med Biol 31:337–344

    PubMed  CAS  Google Scholar 

  • Kumada Y, Nogami M, Minami N, Maehara M, Katoh S (2005) Application of protein-coupled liposomes to effective affinity screening from phage library. J Chromatogr A 1080:22–28

    PubMed  CAS  Google Scholar 

  • Kumar S, Quinn T, Deutscher S (2007) Evaluation of an 111In-radiolabeled peptide as a targeting and imaging agent for ErbB-2 receptor expressing breast carcinomas. Clin Cancer Res 13:6070–6079

    PubMed  CAS  Google Scholar 

  • Kwon S, Ke S, Houston JP, Wang W, Wu Q, Li C, Sevick-Muraca EM (2005) Imaging dose-dependent pharmacokinetics of an RGD-fluorescent dye conjugate targeted to alpha v beta 3 receptor expressed in Kaposi’s sarcoma. Mol Imaging 4:75–87

    PubMed  Google Scholar 

  • Landon LA, Harden W, Illy C, Deutscher SL (2004a) High-throughput fluorescence spectroscopic analysis of affinity of peptides displayed on bacteriophage. Anal Biochem 331:60–67

    PubMed  CAS  Google Scholar 

  • Landon LA, Zou J, Deutscher SL (2004b) Is phage display on target for developing peptide-based cancer drugs? Curr Drug Discov Technol 1:113–132

    PubMed  CAS  Google Scholar 

  • Liang S, Lin T, Ding J, Pan Y, Dang D, Guo C, Zhi M, Zhao P, Sun L, Hong L, Shi Y, Yao L, Liu J, Wu K, Fan D (2006) Screening and identification of vascular-endothelial-cell-specific binding peptide in gastric cancer. J Mol Med 84:764–773

    PubMed  CAS  Google Scholar 

  • Marik J, Lam KS (2005) Peptide and small-molecule microarrays. Methods Mol Biol 310:217–226

    PubMed  CAS  Google Scholar 

  • Martens CL, Cwirla SE, Lee RY, Whitehorn E, Chen EY, Bakker A, Martin EL, Wagstrom C, Gopalan P, Smith CW et al (1995) Peptides which bind to E-selectin and block neutrophil adhesion. J Biol Chem 270:21129–21136

    PubMed  CAS  Google Scholar 

  • Maruta F, Parker AL, Fisher KD, Hallissey MT, Ismail T, Rowlands DC, Chandler LA, Kerr DJ, Seymour LW (2002) Identification of FGF receptor-binding peptides for cancer gene therapy. Cancer Gene Therapy 9:543–552

    PubMed  CAS  Google Scholar 

  • Maruta F, Parker AL, Fisher KD, Murray PG, Kerr DJ, Seymour LW (2003) Use of a phage display library to identify oligopeptides binding to the lumenal surface of polarized endothelium by ex vivo perfusion of human umbilical veins. J Drug Target 11:53–59

    PubMed  CAS  Google Scholar 

  • McGuire MJ, Samli KN, Chang YC, Brown KC (2006) Novel ligands for cancer diagnosis: selection of peptide ligands for identification and isolation of B-cell lymphomas. Exp Hematol 34:443–452

    PubMed  CAS  Google Scholar 

  • Meredith RF, Bueschen AJ, Khazaeli MB, Plott WE, Grizzle WE, Wheeler RH, Schlom J, Russell CD, Liu T, LoBuglio AF (1994) Treatment of metastatic prostate carcinoma with radiolabeled antibody CC49. J Nucl Med 35:1017–1022

    PubMed  CAS  Google Scholar 

  • Michon IN, Penning LC, Molenaar TJ, van Berkel TJ, Biessen EA, Kuiper J (2002) The effect of TGF-beta receptor binding peptides on smooth muscle cells. Biochem Biophys Res Commun 293:1279–1286

    PubMed  CAS  Google Scholar 

  • Newton JR, Kelly KA, Mahmood U, Weissleder R, Deutscher SL (2006) In vivo selection of phage for the optical imaging PC-3 human prostate carcinoma in mice. Neoplasia 8:772–780

    PubMed  CAS  Google Scholar 

  • Nowak JE, Chatterjee M, Mohapatra S, Dryden SC, Tainsky MA (2006) Direct production and purification of T7 phage display cloned proteins selected and analyzed on microarrays. Biotechniques 40:220–227

    PubMed  CAS  Google Scholar 

  • Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Hoiden-Guthenberg I, Widstrom C, Carlsson J, Tolmachev V, Stahl S, Nilsson FY (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348

    PubMed  CAS  Google Scholar 

  • Pakkala M, Jylhasalmi A, Wu P, Leinonen J, Stenman UH, Santa H, Vepsalainen J, Perakyla M, Narvanen A (2004) Conformational and biochemical analysis of the cyclic peptides which modulate serine protease activity. J Pept Sci 10:439–447

    PubMed  CAS  Google Scholar 

  • Pan W, Arnone M, Kendall M, Grafstrom RH, Seitz SP, Wasserman ZR, Albright CF (2003) Identification of peptide substrates for human MMP-11 (stromelysin-3) using phage display. J Biol Chem 278:27820–27827

    PubMed  CAS  Google Scholar 

  • Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366

    PubMed  CAS  Google Scholar 

  • Peletskaya EN, Glinsky G, Deutscher SL, Quinn TP (1996) Identification of peptide sequences that bind the Thomsen-Friedenreich cancer-associated glycoantigen from bacteriophage peptide display libraries. Mol Divers 2:13–18

    PubMed  CAS  Google Scholar 

  • Peletskaya EN, Glinsky VV, Glinsky GV, Deutscher SL, Quinn TP (1997) Characterization of peptides that bind the tumor-associated Thomsen-Friedenreich antigen selected from bacteriophage display libraries. J Mol Biol 270:374–384

    PubMed  CAS  Google Scholar 

  • Ploug M, Østergaard S, Gårdsvoll H, Kovalski K, Holst-Hansen C, Holm A, Ossowski L, Danø K (2001) Peptide-derived antagonists of the urokinase receptor. Affinity maturation by combinatorial chemistry, identification of functional epitopes, and inhibitory effect on cancer cell intravasation. Biochemistry 40:12157–12168

    PubMed  CAS  Google Scholar 

  • Popkov M, Rader C, Barbas CF, 3rd (2004) Isolation of human prostate cancer cell reactive antibodies using phage display technology. J Immunol Methods 291:137–151

    PubMed  CAS  Google Scholar 

  • Rahim A, Coutelle C, Harbottle R (2003) High-throughput pyrosequencing of a phage display library for the identification of enriched target-specific peptides. Biotechniques 35:317–320, 322, 324

    PubMed  CAS  Google Scholar 

  • Rasmussen UB, Schreiber V, Schultz H, Mischler F, Schughart K (2002) Tumor cell-targeting by phage-displayed peptides. Cancer Gene Ther 9:606–612

    PubMed  CAS  Google Scholar 

  • Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427

    PubMed  CAS  Google Scholar 

  • Robinson P, Stuber D, Deryckere F, Tedbury P, Lagrange M, Orfanoudakis G (2005) Identification using phage display of peptides promoting targeting and internalization into HPV-transformed cell lines. J Mol Recognit 18:175–182

    PubMed  CAS  Google Scholar 

  • Romanov VI, Durand DB, Petrenko VA (2001) Phage display selection of peptides that affect prostate carcinoma cells attachment and invasion. Prostate 47:239–251

    PubMed  CAS  Google Scholar 

  • Rusckowski M, Gupta S, Liu G, Dou S, Hnatowich DJ (2004) Investigations of a (99m)Tc-labeled bacteriophage as a potential infection-specific imaging agent. J Nucl Med 45:1201–1208

    PubMed  CAS  Google Scholar 

  • Samoylov AM, Samoylova TI, Hartell MG, Pathirana ST, Smith BF, Vodyanoy V (2002) Recognition of cell-specific binding of phage display derived peptides using an acoustic wave sensor. Biomol Eng 18:269–272

    PubMed  CAS  Google Scholar 

  • Shukla GS, Krag DN (2005) Phage display selection for cell-specific ligands: development of a screening procedure suitable for small tumor specimens. J Drug Target 13:7–18

    PubMed  CAS  Google Scholar 

  • Sivolapenko GB, Skarlos D, Pectasides D, Stathopoulou E, Milonakis A, Sirmalis G, Stuttle A, Courtenay-Luck NS, Konstantinides K, Epenetos AA (1998) Imaging of metastatic melanoma utilising a technetium-99m labelled RGD-containing synthetic peptide. Eur J Nucl Med 25:1383–1389

    PubMed  CAS  Google Scholar 

  • Skelton NJ, Chen YM, Dubree N, Quan C, Jackson DY, Cochran A, Zobel K, Deshayes K, Baca M, Pisabarro MT, Lowman HB (2001) Structure-function analysis of a phage display-derived peptide that binds to insulin-like growth factor binding protein 1. Biochemistry 40:8487–8498

    PubMed  CAS  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    PubMed  CAS  Google Scholar 

  • Souza GR, Christianson DR, Staquicini FI, Ozawa MG, Snyder EY, Sidman RL, Miller JH, Arap W, Pasqualini R (2006) Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci USA 103:1215–1220

    PubMed  CAS  Google Scholar 

  • Spear MA, Breakefield XO, Beltzer J, Schuback D, Weissleder R, Pardo FS, Ladner R (2001) Isolation, characterization, and recovery of small peptide phage display epitopes selected against viable malignant glioma cells. Cancer Gene Ther 8:506–511

    PubMed  CAS  Google Scholar 

  • Stortelers C, Souriau C, van Liempt E, van de Poll ML, van Zoelen EJ (2002) Role of the N-terminus of epidermal growth factor in ErbB-2/ErbB-3 binding studied by phage display. Biochemistry 41:8732–8741

    PubMed  CAS  Google Scholar 

  • Su ZF, Liu G, Gupta S, Zhu Z, Rusckowski M, Hnatowich DJ (2002) In vitro and in vivo evaluation of a Technetium-99m-labeled cyclic RGD peptide as a specific marker of alpha(V)beta(3) integrin for tumor imaging. Bioconjugate Chem 13:561–570

    CAS  Google Scholar 

  • Urbanelli L, Ronchini C, Fontana L, Menard S, Orlandi R, Monaci P (2001) Targeted gene transduction of mammalian cells expressing the HER2/neu receptor by filamentous phage. J Mol Biol 313:965–976

    PubMed  CAS  Google Scholar 

  • Van de Wiele C, Dumont F, Dierckx RA, Peers SH, Thornback JR, Slegers G, Thierens H (2001) Biodistribution and dosimetry of (99m)Tc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor-expressing malignancies. J Nucl Med 42:1722–1727

    PubMed  Google Scholar 

  • van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–298

    PubMed  Google Scholar 

  • Vidal CI, Mintz PJ, Lu K, Ellis LM, Manenti L, Giavazzi R, Gershenson DM, Broaddus R, Liu J, Arap W, Pasqualini R (2004) An HSP90-mimic peptide revealed by fingerprinting the pool of antibodies from ovarian cancer patients. Oncogene 23:8859–8867

    PubMed  CAS  Google Scholar 

  • Virgolini I (1997) Mack Forster Award Lecture. Receptor nuclear medicine: vasointestinal peptide and somatostatin receptor scintigraphy for diagnosis and treatment of tumour patients. Eur J Clin Invest 27:793–800

    PubMed  CAS  Google Scholar 

  • Voss SD, DeGrand AM, Romeo GR, Cantley LC, Frangioni JV (2002) An integrated vector system for cellular studies of phage display-derived peptides. Anal Biochem 308:364–372

    PubMed  CAS  Google Scholar 

  • Walter G, Konthur Z, Lehrach H (2001) High-throughput screening of surface displayed gene products. Comb Chem High Throughput Screen 4:193–205

    PubMed  CAS  Google Scholar 

  • Waltz E (2006) After criticism, more modest cancer genome project takes shape. Nat Med 12:259

    Google Scholar 

  • Wang W, Ke S, Wu Q, Charnsangavej C, Gurfinkel M, Gelovani JG, Abbruzzese JL, Sevick-Muraca EM, Li C (2004) Near-infrared optical imaging of integrin alphavbeta3 in human tumor xenografts. Mol Imaging 3:343–351

    PubMed  CAS  Google Scholar 

  • Weber WA, Haubner R, Vabuliene E, Kuhnast B, Wester HJ, Schwaiger M (2001) Tumor angiogenesis targeting using imaging agents. Q J Nucl Med 45:179–182

    PubMed  CAS  Google Scholar 

  • Yang SQ, Craik CS (1998) Engineering bidentate macromolecular inhibitors for trypsin and urokinase-type plasminogen activator. J Mol Biol 279:1001–1011

    PubMed  CAS  Google Scholar 

  • Ye Y, Bloch S, Xu B, Achilefu S (2006) Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors. J Med Chem 49:2268–2275

    PubMed  CAS  Google Scholar 

  • Zitzmann S, Mier W, Schad A, Kinscherf R, Askoxylakis V, Kramer S, Altmann A, Eisenhut M, Haberkorn U (2005) A new prostate carcinoma binding peptide (DUP-1) for tumor imaging and therapy. Clin Cancer Res 11:139–146

    PubMed  CAS  Google Scholar 

  • Zou J, Dickerson MT, Owen NK, Landon LA, Deutscher SL (2004) Biodistribution of filamentous phage peptide libraries in mice. Mol Biol Rep 31:121–129

    PubMed  CAS  Google Scholar 

  • Zou J, Glinsky VV, Landon LA, Matthews L, Deutscher SL (2005) Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion. Carcinogenesis 26:309–318

    PubMed  CAS  Google Scholar 

  • Zurita AJ, Troncoso P, Cardo-Vila M, Logothetis CJ, Pasqualini R, Arap W (2004) Combinatorial screenings in patients: the interleukin-11 receptor alpha as a candidate target in the progression of human prostate cancer. Cancer Res 64:435–439

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Deutscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Newton, J., Deutscher, S.L. (2008). Phage Peptide Display. In: Semmler, W., Schwaiger, M. (eds) Molecular Imaging II. Handbook of Experimental Pharmacology, vol 185/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77496-9_7

Download citation

Publish with us

Policies and ethics