Skip to main content

Real-Time Time-to-Collision from Variation of Intrinsic Scale

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 39))

Summary

Time-to-collision can be directly measured from a spatio-temporal image sequence obtained from an uncalibrated camera. This it would appear to offer a simple, elegant measurement for use in obstacle avoidance. However, previous techniques for computing time to collision from an optical flow have proven impractical for real applications.

This paper present a new approach for computing time to collision (TTC) based on the idea of measuring the rate of change of the ”intrinsic scale”. Intrinsic scale is a geometric invariant that is valid at most points in an image, and can be rapidly determined using a multi-resolution pyramid.

In this paper we develop the approach and demonstrate its feasibility by comparing the results with range measurements obtained from a laser ranging device on a moving vehicle. Experimental results show that this is a simple method to obtain reliable TTC with a low computational cost.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bretzner, L., Lindeberg, T.: Feature tracking with automatic selection of spatial scales. Computer Vision and Image Understanding 71(3), 385–392 (1998)

    Article  Google Scholar 

  2. Burt, P., Adelson, E.H: The laplacian pyramid as a compact image code. IEEE Transactions on Communications 9(4), 532–540 (1983)

    Article  Google Scholar 

  3. Camus, T.A.: Real-time optical flow. PhD thesis, Brown university, Providence, RI 02912, USA (September 1994)

    Google Scholar 

  4. Crowley, J.L.: A representation for visual information. PhD thesis, Carnegie-Mellon University (1981)

    Google Scholar 

  5. Crowley, J.L., Parker, A.C.: A representation for shape based on peaks and ridges in the difference of low-pass transform. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(2), 156–170 (1984)

    Article  Google Scholar 

  6. Crowley, J.L., Hall, D., de Verdière, V.C.: View invariant object recognition using coloured receptive fields. Machine GRAPHICS and VISION 9(2), 341–352 (2000)

    Google Scholar 

  7. Franceschini, N., Pichon, J.M., Blanes, C.: From insect vision to robot vision. Philosophical Transactions: Biological Sciences 337, 283–294 (1992)

    Article  Google Scholar 

  8. Gibson, J.J.: The ecological approach to visual perception. Houghton Mifflin, Boston (1979)

    Google Scholar 

  9. Hai, T.T.T., Lux, A.: Extraction de caractéristiques locales: Crêtes et pics. In: RIVF, pp. 203–211 (2003)

    Google Scholar 

  10. Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–396 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lee, D.N.: A theory of visual control of braking base on information about time-to-collision. Perception 5, 437–459 (1976)

    Article  Google Scholar 

  12. Lindeberg, T.: Feature detection with automatic selection of spatial scales. In: IJCV, vol. 30, pp. 79–116 (1998)

    Google Scholar 

  13. Lowe, D.G.: Object recognition from local scale-invariant feature. In: International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. In: IJCV, vol. 60, pp. 91–110 (2004)

    Google Scholar 

  15. Mikolajezyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proceedings of the International Conference on Computer Vision, pp. 525–531 (2001)

    Google Scholar 

  16. Nelson, R.C., Aloimonos, J.: Obstacle avoidance using flow field divergence. IEEE Trans. Pattern Anal. Mach. Intell. 11(10), 1102–1106 (1989)

    Article  Google Scholar 

  17. Schiff, W., Caviness, J.A., Gibson, J.J.: Persistent fear responses in rhesus monkeys to the optical stimulus of ”looming”. Science 136, 982–983 (1962)

    Article  Google Scholar 

  18. Tistarelli, M., Sandini, G.: On the advantages of polar and log-polar mapping for direct estimation of time-to-impact from optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 401–410 (1993)

    Article  Google Scholar 

  19. Witkin, A.P.: Scale-space filtering. IJCAI, pp. 1019–1023 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oussama Khatib Vijay Kumar Daniela Rus

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nègre, A., Braillon, C., Crowley, J.L., Laugier, C. (2008). Real-Time Time-to-Collision from Variation of Intrinsic Scale. In: Khatib, O., Kumar, V., Rus, D. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77457-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77457-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77456-3

  • Online ISBN: 978-3-540-77457-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics