Skip to main content

Nuts and Bolts of Human Cytomegalovirus Lytic DNA Replication

  • Chapter
Human Cytomegalovirus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 325))

HCMV lytic DNA replication is complex and highly regulated. The cis -acting lytic origin of DNA replication (oriLyt) contains multiple repeat motifs that comprise two main functional domains. The first is a bidirectional promoter element that is responsive to UL84 and IE2. The second appears to be an RNA/DNA hybrid region that is a substrate for UL84. UL84 is required for oriLyt-dependent DNA replication along with the six core proteins, UL44 (DNA processivity factor), UL54 (DNA polymerase), UL70 (primase), UL105 (helicase), UL102 (primase-associated factor) and UL57 (single-stranded DNA-binding protein). UL84 is an early protein that shuttles from the nucleus to the cytoplasm, binds RNA, suppresses the transcriptional activation function of IE2, has UTPase activity and is proposed to be a member of the DExH/D box family of proteins. UL84 is a key factor that may act in concert with the other core replication proteins to initiate lytic replication by altering the conformation of an RNA stem loop structure within oriLyt. In addition, new data suggests that UL84 interacts with at least one member of the viral replication proteins and several cellular encoded proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiyar A, Tyree C, Sugden B (1998) The plasmid replicon of EBV consists of multiple cis-acting elements that facilitate DNA synthesis by the cell and a viral maintenance element. EMBO J 17:6394–6403.

    Article  PubMed  CAS  Google Scholar 

  • Alvisi G, Ripalti A, Ngankeu A, Giannandrea A, Caraffi SG, Dias MM, Jans DA (2006) Human cytomegalovirus DNA polymerase catalytic subunit pUL54 possesses independently acting nuclear localization and ppUL44 binding motifs. Traffic 7:1322–1332.

    Article  PubMed  CAS  Google Scholar 

  • Anders DG, Punturieri SM (1991) Multicomponent origin of cytomegalovirus lytic-phase DNA replication. J Virol 65:931–937.

    PubMed  CAS  Google Scholar 

  • Anders DG, Kacica MA, Pari G, Punturieri SM (1992) Boundaries and structure of human cytomegalovirus oriLyt, a complex origin for lytic-phase DNA replication. J Virol 66:3373–3384.

    PubMed  CAS  Google Scholar 

  • Appleton BA, Brooks J, Loregian A, Filman DJ, Coen DM, Hogle JM (2006) Crystal structure of the cytomegalovirus DNA polymerase subunit UL44 in complex with the C terminus from the catalytic subunit. Differences in structure and function relative to unliganded UL44. J Biol Chem 281:5224–5232.

    Article  PubMed  CAS  Google Scholar 

  • Arlt H, Lang D, Gebert S, Stamminger T (1994) Identification of binding sites for the 86-kilodalton IE2 protein of human cytomegalovirus within an IE2-responsive viral early promoter. J Virol 68:4117–4125.

    PubMed  CAS  Google Scholar 

  • AuCoin DP, Colletti KS, Cei SA, Papouskova I, Tarrant M, Pari GS (2004) Amplification of the Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 lytic origin of DNA replication is dependent upon a cis-acting AT-rich region and an ORF50 response element and the trans-acting factors ORF50 (K-Rta) and K8 (K-bZIP). Virology 318:542–555.

    Article  PubMed  CAS  Google Scholar 

  • Blankenship CA, Shenk T (2002) Mutant human cytomegalovirus lacking the immediate-early TRS1 coding region exhibits a late defect. J Virol 76:12290–12299.

    Article  PubMed  CAS  Google Scholar 

  • Boehmer PE (2004) RNA binding and R-loop formation by the herpes simplex virus type-1 single-stranded DNA-binding protein (ICP8). Nucleic Acids Res 32:4576–4584.

    Article  PubMed  CAS  Google Scholar 

  • Borst EM, Messerle M (2005) Analysis of human cytomegalovirus oriLyt sequence requirements in the context of the viral genome. J Virol 79:3615–3626.

    Article  PubMed  CAS  Google Scholar 

  • Cassady KA (2005) Human cytomegalovirus TRS1 and IRS1 gene products block the double-stranded-RNA-activated host protein shutoff response induced by herpes simplex virus type 1 infection. J Virol 79:8707–8715.

    Article  PubMed  CAS  Google Scholar 

  • Cherrington JM, Khoury EL, Mocarski ES (1991) Human cytomegalovirus ie2 negatively regulates alpha gene expression via a short target sequence near the transcription start site. J Virol 65:887–896.

    PubMed  CAS  Google Scholar 

  • Child SJ, Hakki M, De Niro KL, Geballe AP (2004) Evasion of cellular antiviral responses by human cytomegalovirus TRS1 and IRS1. J Virol 78:197–205.

    Article  PubMed  CAS  Google Scholar 

  • Colberg-Poley AM (1996) Functional roles of immediate early proteins encoded by the human cytomegalovirus UL36–38, UL115–119, TRS1/IRS1 and US3 loci. Intervirology 39:350–360.

    PubMed  CAS  Google Scholar 

  • Colletti KS, Xu Y, Yamboliev I, Pari GS (2005) Human cytomegalovirus UL84 is a phosphoprotein that exhibits UTPase activity and is a putative member of the DExD/H box family of proteins. J Biol Chem 280:11955–11960.

    Article  PubMed  CAS  Google Scholar 

  • Colletti KS, Smallenburg KE, Xu Y, Pari GS (2007) Human cytomegalovirus UL84 interacts with an RNA stemloop sequence found within the RNA/DNA hybrid region of oriLyt. J Virol 81:7077–7085.

    Article  PubMed  CAS  Google Scholar 

  • Ertl PE, Powell KL (1992) Physical and functional interaction of human cytomegalovirus and its accessory protein (ICP36). J Virol 66:4126–4133.

    PubMed  CAS  Google Scholar 

  • Ertl PF, Thomas MF, Powell KL (1994) High level expression of DNA polymerases from herpesvirues. J Gen Virol 72:1729–1734.

    Article  Google Scholar 

  • Fairman ME, Maroney PA, Wang W, Bowers HA, Gollnick P, Nilsen TW, Jankowsky E (2004) Protein displacement by DExH/D “RNA helicases” without duplex unwinding. Science 304:730–734.

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Colletti K, Pari GS (2008) Identification of Human Cytomegalovirus UL84 viral and cellular encoded binding partners using proteomics Analysis. J Virol 82:96–104.

    Article  PubMed  CAS  Google Scholar 

  • Gebert S, Schmolke S, Sorg G, Floss S, Plachter B, Stamminger T (1997) The UL84 protein of human cytomegalovirus acts as a transdominant inhibitor of immediate-early-mediated transactivation that is able to prevent viral replication. J Virol 71:7048–7060.

    PubMed  CAS  Google Scholar 

  • Hakki M, Geballe AP (2005) Double-stranded RNA binding by human cytomegalovirus pTRS1. J Virol 79:7311–7318.

    Article  PubMed  CAS  Google Scholar 

  • Hammerschmidt W, Sugden B (1988) Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55:427–433.

    Article  PubMed  CAS  Google Scholar 

  • Hamzeh FM, Lietman PS, Gibson W, Hayward GS (1990) Identification of the lytic origin of DNA replication in human cytomegalovirus by a novel approach utilizing ganciclovir-induced chain termination. J Virol 64:6184–6195.

    PubMed  CAS  Google Scholar 

  • He YS, Xu L, Huang E-S (1992) Characterization of human cytomegalovirus UL84 early gene and identification of its putative protein product. J Virol 66:1098–1108.

    PubMed  CAS  Google Scholar 

  • Huang CH, Chen JY (2002) Identification of additional IE2–p86-responsive cis-repressive sequences within the human cytomegalovirus major immediate early gene promoter. J Biomed Sci 9:460–470.

    PubMed  CAS  Google Scholar 

  • Jankowsky E, Bowers H (2006) Remodeling of ribonucleoprotein complexes with DExH/D RNA helicases. Nucleic Acids Res 34:4181–4188.

    Article  PubMed  CAS  Google Scholar 

  • Kerry JA, Priddy MA, Stenberg RM (1994) Identification of sequence elements in the human cytomegalovirus DNA polymerase gene promoter required for activation by viral gene products. J Virol 68:4167–4176.

    PubMed  CAS  Google Scholar 

  • Kerry JA, Priddy MA, Jervey TY, Kohler CP, Staley TL, Vanson CD, Jones TR, Iskenderian AC, Anders DG, Stenberg RM (1996) Multiple regulatory events influence human cytomegalovirus DNA polymerase (UL54) expression during viral infection. J Virol 70:373–382.

    PubMed  CAS  Google Scholar 

  • Krosky PM, Baek MC, Jahng WJ, Barrera I, Harvey RJ, Biron KK, Coen DM, Sethna PB (2003) The human cytomegalovirus UL44 protein is a substrate for the UL97 protein kinase. J Virol 77:7720–7727.

    Article  PubMed  CAS  Google Scholar 

  • Lashmit PE, Stinski MF, Murphy EA, Bullock GC (1998) A cis repression sequence adjacent to the transcription start site of the human cytomegalovirus US3 gene is required to down regulate gene expression at early and late times after infection. J Virol 72:9575–9584.

    PubMed  CAS  Google Scholar 

  • Lin CL, Li H, Wang Y, Zhu FX, Kudchodkar S, Yuan Y (2003) Kaposi’s sarcoma-associated herpesvirus lytic origin (ori-Lyt)-dependent DNA replication: identification of the ori-Lyt and association of K8 bZip protein with the origin. J Virol 77:5578–5588.

    Article  PubMed  CAS  Google Scholar 

  • Lischka P, Rauh C, Mueller R, Stamminger T (2006) Human cytomegalovirus UL84 protein contains two nuclear export signals and shuttles between the nucleus and the cytoplasm. J Virol 80:10274–10280.

    Article  PubMed  CAS  Google Scholar 

  • Loregian A, Rigatti R, Murphy L, Schievano E, Palu G, Marsden HS (2003) Inhibition of human cytomegalovirus DNA polymerase by C-terminal peptides from the UL54 subunit. J Virol 77:8336–8344.

    Article  PubMed  CAS  Google Scholar 

  • Loregian A, Appleton BA, Hogle JM, Coen DM (2004) Residues of human cytomegalovirus DNA polymerase catalytic subunit UL54 that are necessary and sufficient for interaction with the accessory protein UL44. J Virol 78:158–167.

    Article  PubMed  CAS  Google Scholar 

  • Masse MJO, Karlin S, Schachtel GA, Mocarski ES (1992) Human cytomegalovirus origin of replication (oriLyt) resides within a highly complex repetitive region. Proc Natl Acad Sci USA 89:5246–5250.

    Article  PubMed  CAS  Google Scholar 

  • McMahon TP, Anders DG (2002) Interactions between human cytomegalovirus helicase-primase proteins. Virus Res 86:39–52.

    Article  PubMed  CAS  Google Scholar 

  • McVoy MA, Adler SP (1994) Human cytomegalovirus DNA replicates after early circularization by concatemer formation, and inversion occurs within the concatemer. J Virol 68:1040–1051.

    PubMed  CAS  Google Scholar 

  • Pari GS, Anders DG (1993) Eleven loci encoding trans-acting factors are required for transient complementation of human cytomegalovirus oriLyt-dependent DNA replication. J Virol 67:6979–6988.

    PubMed  CAS  Google Scholar 

  • Pari GS, Kacica MA, Anders DG (1993) Open reading frames UL44, IRS1/TRS1, and UL36–38 are required for transient complementation of human cytomegalovirus oriLyt-dependent DNA synthesis. J Virol 67:2575–2582.

    PubMed  CAS  Google Scholar 

  • Park MY, Kim YE, Seo MR, Lee JR, Lee CH, Ahn JH (2006) Interactions among four proteins encoded by the human cytomegalovirus UL112–113 region regulate their intranuclear targeting and the recruitment of UL44 to prereplication foci. J Virol 80:2718–2727.

    Article  PubMed  CAS  Google Scholar 

  • Penfold MET, Mocarski ES (1997) Formation of cytomegalovirus DNA replication compartments defined by localization of viral proteins and DNA synthesis. Virology 239:46–61.

    Article  PubMed  CAS  Google Scholar 

  • Prichard MN, Jairath S, Penfold ME, St Jeor S, Bohlman MC, Pari GS (1998) Identification of persistent RNA-DNA hybrid structures within the origin of replication of human cytomegalovirus. J Virol 72:6997–7004.

    PubMed  CAS  Google Scholar 

  • Romanowski MJ, Garrido-Guerrero E, Shenk T (1997) pIRS1 and pTRS1 are present in human cytomegalovirus virions. J Virol 71:5703–5705.

    PubMed  CAS  Google Scholar 

  • Sarisky RT, Hayward GS (1996) Evidence that the UL84 gene product of human cytomegalovirus is essential for promoting oriLyt-dependent DNA replication and formation of replication compartments in cotransfection assays. J Virol 70:7398–7413.

    PubMed  CAS  Google Scholar 

  • Smith JA, Pari GS (1995) Human cytomegalovirus UL102 gene. J Virol 69:1734–1740.

    PubMed  CAS  Google Scholar 

  • Smith JA, Jairath S, Crute JJ, Pari GS (1996) Characterization of the human cytomegalovirus UL105 gene and identification of the putative helicase protein. Virology 220:251–255.

    Article  PubMed  CAS  Google Scholar 

  • Spector DJ, Tevethia MJ (1994) Protein-protein interactions between human cytomegalovirus IE2–5f80aa and pUL84 in lytically infected cells. J Virol 68:7549–7553.

    PubMed  CAS  Google Scholar 

  • Stasiak PC, Mocarski ES (1992) Transactivation of the cytomegalovirus ICP36 gene promoter requires the alpha gene product TRS1 in addition to IE1 and IE2. J Virol 66:1050–1058.

    PubMed  CAS  Google Scholar 

  • Trego KS, Parris DS (2003) Functional interaction between the herpes simplex virus type 1 polymerase processivity factor and origin-binding proteins: enhancement of UL9 helicase activity. J Virol 77:12646–12659.

    Article  PubMed  CAS  Google Scholar 

  • Trego KS, Zhu Y, Parris DS (2005) The herpes simplex virus type 1 DNA polymerase processivity factor, UL42, does not alter the catalytic activity of the UL9 origin-binding protein but facilitates its loading onto DNA. Nucleic Acids Res 33:536–545.

    Article  PubMed  CAS  Google Scholar 

  • Tsai HL, Kou GH, Tang FM, Wu CW, Lin YS (1997) Negative regulation of a heterologous promoter by human cytomegalovirus immediate-early protein IE2. Virology 238:372–379.

    Article  PubMed  CAS  Google Scholar 

  • Wang SE, Wu FY, Fujimuro M, Zong J, Hayward SD, Hayward GS (2003) Role of CCAAT/enhancer-binding protein alpha (C/EBPalpha) in activation of the Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic-cycle replication-associated protein (RAP) promoter in cooperation with the KSHV replication and transcription activator (RTA) and RAP. J Virol 77:600–623.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li H, Chan MY, Zhu FX, Lukac DM, Yuan Y (2004) Kaposi’s sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: cis-acting requirements for replication and ori-Lyt-associated RNA transcription. J Virol 78:8615–8629.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Cei SA, Huete AR, Pari GS (2004a) Human cytomegalovirus UL84 insertion mutant defective for viral DNA synthesis and growth. J Virol 78:10360–10369.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Cei SA, Rodriguez Huete A, Colletti KS, Pari GS (2004b) Human cytomegalovirus DNA replication requires transcriptional activation via an IE2- and UL84-responsive bidirectional promoter element within oriLyt. J Virol 78:11664–11677.

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Huang L, Anders DG (1998) Human cytomegalovirus oriLyt sequence requirements. J Virol 72:4989–4996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pari, G.S. (2008). Nuts and Bolts of Human Cytomegalovirus Lytic DNA Replication. In: Shenk, T.E., Stinski, M.F. (eds) Human Cytomegalovirus. Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77349-8_9

Download citation

Publish with us

Policies and ethics