Skip to main content

Polymer Hydrogels to Enable New Medical Therapies

  • Chapter
  • First Online:
Hydrogel Sensors and Actuators

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 6))

Abstract

Hydrogels are well-established materials in various biomedical technologies. This chapter highlights current trends in the research on hydrophilic polymer systems motivated by the demand of advanced, cell-based medical therapies. Two major aspects of the use of polymeric materials in regenerative medicine are discussed: Functional coatings for cell culture carriers and polymer scaffolds for in vivo tissue engineering. With respect to cell culture carriers emphasis is put on stimuli-responsive polymers used for the gentle harvest of cell sheets; the example given concerns the processing of corneal endothelial cell layers supporting new approaches for cornea repair. A second subsection is dedicated to polymer scaffolds for in vivo tissue engineering and refers to recent developments of biohybrid polymers containing heparin as the biomolecular component. The example reports on ongoing own research on star-poly(ethylene glycol)-heparin-hydrogels currently explored as injectable matrices to support angiogenesis, a key process in the regeneration of almost all tissues and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Matrigel is the trade name (BD Biosciences) for a solubilised basement membrane preparation extracted from the Engelbreth-Holm-Swarm mouse sarcoma, a tumor rich in extracellular matrix proteins. This mixture resembles the complex extracellular environment found in many tissues and is used as a substrate for cell culture.

  2. 2.

    RGD is the one-letter amino acid code abbreviation for arginine-glycine-aspartic acid. Peptide sequences containing a RGD motif are used as specific ligands to mediate cell adhesion.

  3. 3.

    The cross-linking degree of the gels was calculated based on the star-PEG and heparin amount in the rinsed gels. More precisely, the degree is counted for the heparin carboxylic acid groups assuming that in average 3 of the 4 amino groups of the remaining star-PEG molecules are bound to heparin.

  4. 4.

    This assay is used to measure cell viability. It is a two-color fluorescence assay that simultaneously determines live (viable) and dead (nonviable) cells: Live cells have intracellular esterases that convert nonfluorescent, cell-permeable fluorescein di-O-acetate to the intensely fluorescent fluorescein (green). Cleaved fluorescein is retained within cells. Dead cells have damaged membranes; propidium iodide enters damaged cells and is fluorescent when bound to nucleic acids. It produces a bright red fluorescence in damaged or dead cells.

  5. 5.

    Colorimetric MTT (tetrazolium) assay (Mosmann 1983) was used to quantify living cells. In short, yellow MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) is reduced to purple colored formazan in the mitochondria of living cells. The absorbance of the colored solution is analysed using a spectrophotometer allowing for quantification of living cells.

Abbreviations

DEGMA:

Diethyleneglycol methacrylate

ECM:

Extracellular matrix

EDC:

1-ethyl-3-(3-dimethylaminopropyl) carbodiimid

FGF-2:

Basic fibroblast growth factor

FN:

Fibronectin

FTIR-ATR:

Fourier transform infrared attenuated total reflection

HUVECs:

Human endothelial cells isolated from umbilical cord

MMP :

Matrix metalloproteinase

PBS:

Phosphate buffered saline

PEG :

Poly(ethylene glycol)

PNIPAAm :

Poly(N-isopropyl acrylamide)

RGD :

Amino acid code for arginine-glycine-aspartic acid

SRP:

Stimuli responsive polymer

sulfo-NHS:

N-hydroxysulfosuccinimid

TCP:

Tissue culture polystyrene

TGF-β:

Transforming growth factor beta

VEGF:

Vascular endothelial growth factor

XPS:

X-ray photoelectron spectroscopy

References

  • Benoit DSW, Anseth KS (2005) Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation. Acta Biomater 1:461–470

    Article  Google Scholar 

  • Benoit DSW, Durney AR, Anseth KS (2007) The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation. Biomaterials 28:66–77

    Article  Google Scholar 

  • Biederman H, Osada Y (1992) Plasma polymerization processes. Elsevier, Amsterdam

    Google Scholar 

  • Boontheekul T, Mooney DJ (2003) Protein-based signaling systems in tissue engineering. Cur Opin Biotechn 14:559–565

    Article  Google Scholar 

  • Burdick JA, Anseth KS (2002) Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315–4323

    Article  Google Scholar 

  • Burdick JA, Khademhosseini A, Langer R (2004) Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20:5153–5156

    Article  Google Scholar 

  • Canavan HE, Cheng XH, Graham DJ et al (2005) Cell sheet detachment affects the extracellular matrix: a surface science study comparing thermal liftoff, enzymatic, and mechanical methods. J Biomed Mater Res A 75:1–13

    Google Scholar 

  • Capila I, Linhardt RJ (2002) Heparin-protein interactions. Angew Chem Int Ed 41:391–412

    Article  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  Google Scholar 

  • Chen GP, Imanishi Y, Ito Y (1998) Effect of protein and cell behavior on pattern-grafted thermoresponsive polymer. J Biomed Mater Res 42:38–44

    Article  Google Scholar 

  • Cheng XH, Canavan HE, Stein MJ et al (2005) Surface chemical and mechanical properties of plasma-polymerized N-isopropylacrylamide. Langmuir 21:7833–7841

    Article  Google Scholar 

  • Curti PS, de Moura MR, Veiga W et al (2005) Characterization of PNIPAAm photografted on PET and PS surfaces. Appl Surf Sci 245:223–233

    Article  Google Scholar 

  • Da Silva RMP, Mano JF, Reis RL (2007) Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. Trends Biotechnol 25:577–583

    Article  Google Scholar 

  • Delong SA, Mann BK, West JL (2002) Scaffolds modified with tethered growth factors to influence smooth muscle cell behavior. Faseb J 16:A36–A36

    Article  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  Google Scholar 

  • Fischbach C, Mooney DJ (2006) Polymeric systems for bioinspired delivery of angiogenic molecules. In: Werner C (ed) Polymers for regenerative medicine. Springer, Berlin Heidelberg, pp 191–221

    Chapter  Google Scholar 

  • Freudenberg U, Hermann A, Welzel PB et al (2009) A star PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomatrials, in press, doi: 10.1016/j.biomaterials.2009.06.002

    Google Scholar 

  • Götze T, Valtink M, Nitschke M et al (2008) Cultivation of an immortalized human corneal endothelial cell population and two distinct clonal subpopulations on thermo-responsive carriers. Graefes Arch Clin Exp Ophthalmol 246:1575–1583

    Article  Google Scholar 

  • Gramm S, Komber H, Schmaljohann D (2005) Copolymerization kinetics of N-isopropylacrylamide and diethylene glycol monomethylether monomethacrylate determined by online NMR spectroscopy. J Polym Sci Pol Chem 43:142–148

    Article  Google Scholar 

  • Hatakeyama H, Kikuchi A, Yamato M et al (2006) Bio-functionalized thermoresponsive interfaces facilitating cell adhesion and proliferation. Biomaterials 27:5069–5078

    Article  Google Scholar 

  • Hatakeyama H, Kikuchi A, Yamato M et al (2007) Patterned biofunctional designs of thermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth, and thermally induced detachment. Biomaterials 28:3632–3643

    Article  Google Scholar 

  • Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39:266–276

    Article  Google Scholar 

  • Huang J, Wang XL, Chen XZ et al (2003) Temperature-sensitive membranes prepared by the plasma-induced graft polymerization of N-isopropylacrylamide into porous polyethylene membranes. J Appl Polym Sci 89:3180–3187

    Article  Google Scholar 

  • Hutmacher DW, Garcia AJ (2005) Scaffold-based bone engineering by using genetically modified cells. Gene 347:1–10

    Article  Google Scholar 

  • Ide T, Nishida K, Yamato M et al (2006) Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials 27:607–614

    Article  Google Scholar 

  • Jia X, Kiick K (2009) Hybrid multicomponent hydrogels for tissue engineering. Macromol Biosci 9:140–156

    Article  Google Scholar 

  • Kanzaki M, Yamato M, Hatakeyama H et al (2006) Tissue engineered epithelial cell sheets for the creation of a bioartificial trachea. Tissue Eng 12:1275–1283

    Article  Google Scholar 

  • Kiick KL (2008) Peptide- and protein-mediated assembly of heparinized hydrogels. Soft Matter 4:29–37

    Article  Google Scholar 

  • Kolff WJ, Berk HTJ, ter Welle NM et al (1997) The artificial kidney: a dialyser with a great area. J Am Soc Nephrol 8:1959–1965

    Google Scholar 

  • Kopecek J, Yang J (2009) Peptide-directed self-assembly of hydrogels. Acta Biomater 5:805–816

    Article  Google Scholar 

  • Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ et al (2008) Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29:2757–2766

    Article  Google Scholar 

  • Kwon OH, Kikuchi A, Yamato M et al (2000) Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J Biomed Mater Res 50:82–89

    Article  Google Scholar 

  • Kwon OH, Kikuchi A, Yamato M et al (2003) Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials 24:1223–1232

    Article  Google Scholar 

  • Lai JY, Chen KH, Hsu WM et al (2006) Bioengineered human corneal endothelium for transplantation. Arch Ophthalmol 124:1441–1448

    Article  Google Scholar 

  • Liu YC, Cai SS, Shu XZ et al (2007) Release of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing. Wound Repair Regen 15:245–251

    Article  Google Scholar 

  • Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55

    Article  Google Scholar 

  • Lutolf MP, Lauer-Fields JL, Schmoekel HG et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. P Natl Acad Sci USA 100:5413–5418

    Article  Google Scholar 

  • Mann BK, Schmedlen RH, West JL (2001) Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials 22:439–444

    Article  Google Scholar 

  • Matsuda N, Shimizu T, Yamato M et al (2007) Tissue engineering based on cell sheet technology. Adv Mater 19:3089–3099

    Article  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival- application to proliferation and cyto-toxicity assays. J Immun Met 65:55–63

    Article  Google Scholar 

  • Nie T, Baldwin A, Yamaguchi N et al (2007) Production of heparin-functionalized hydrogels for the development of responsive and controlled growth factor delivery systems. J Control Release 122:287–296

    Article  Google Scholar 

  • Nillesen STM, Geutjes PJ, Wismans R et al (2007) Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28:1123–1131

    Article  Google Scholar 

  • Nishida K, Yamato M, Hayashida Y et al (2004) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsieve cell culture surface. Transplantation 77:379–385

    Article  Google Scholar 

  • Nitschke M, Zschoche S, Baier A et al (2004) Low pressure plasma immobilization of thin hydrogel films on polymer surfaces. Surf Coat Technol 185:120–125

    Article  Google Scholar 

  • Nitschke M, Gramm S, Götze T et al (2007a) Thermo-responsive poly(NiPAAm-co-DEGMA) substrates for gentle harvest of human corneal endothelial cell sheets. J Biomed Mater Res A 80:1003–1010

    Google Scholar 

  • Nitschke M, Götze T, Gramm S et al (2007b) Detachment of human endothelial cell sheets from thermo-responsive poly(NiPAAm-co-DEGMA) carriers. Express Polym Lett 1:660–666

    Article  Google Scholar 

  • Pan YV, Wesley RA, Luginbuhl R et al (2001) Plasma polymerized N-isopropylacrylamide: synthesis and characterization of a smart thermally responsive coating. Biomacromolecules 2:32–36

    Article  Google Scholar 

  • Peppas NA, Hilt JZ, Khademhosseini A et al (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  Google Scholar 

  • Pratt AB, Weber FE, Schmoekel HG et al (2004) Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng 86:27–36

    Article  Google Scholar 

  • Pridgen EM, Langer R, Farokhzad OC (2007) Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2:669–680

    Article  Google Scholar 

  • Rzaev ZMO, Dincer S, Piskin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595

    Article  Google Scholar 

  • Schild HG (1992) Poly (N-Isopropylacrylamide) – experiment, theory and application. Prog Polym Sci 17:163–249

    Article  Google Scholar 

  • Schmaljohann D, Nitschke M, Beyerlein D et al (2003a) Thermo-reversible swelling of plasma immobilized hydrogel films. Polymer Preprints 44:196–197

    Google Scholar 

  • Schmaljohann D, Oswald J, Jorgensen B et al (2003b) Thermo-responsive PNiPAAm-g-PEG films for controlled cell detachment. Biomacromolecules 4:1733–1739

    Article  Google Scholar 

  • Schmaljohann D, Beyerlein D, Nitschke M et al (2004) Thermo-reversible swelling of thin hydrogel films immobilized by low-pressure plasma. Langmuir 20:10107–10114

    Article  Google Scholar 

  • Schmaljohann D, Nitschke M, Schulze R et al (2005) In situ study of the thermoresponsive behavior of micropatterned hydrogel films by imaging ellipsometry. Langmuir 21: 2317–2322

    Article  Google Scholar 

  • Seal BL, Panitch A (2003) Physical polymer matrices based on affinity interactions between peptides and polysaccharides. Biomacromolecules 4:1572–1582

    Article  Google Scholar 

  • Seal BL, Panitch A (2006) Viscoelastic behavior of environmentally sensitive biomimetic polymer matrices. Macromolecules 39:2268–2274

    Article  Google Scholar 

  • Shimizu T, Yamato M, Isoi Y et al (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:E40–E48

    Article  Google Scholar 

  • Silva GA, Czeisler C, Niece KL et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    Article  Google Scholar 

  • Stamov D, Grimmer M, Salchert K et al (2008) Heparin intercalation into reconstituted collagen I fibrils: impact on growth kinetics and morphology. Biomaterials 29:1–14

    Article  Google Scholar 

  • Tae G, Scatena M, Stayton PS et al (2006) PEG-cross-linked heparin is an affinity hydrogel for sustained release of vascular endothelial growth factor. J Biomat Sci Polym E 17:187–197

    Article  Google Scholar 

  • Takezawa T, Mori Y, Yoshizato K (1990) Cell-culture on a thermoresponsive polymer surface. Bio-Technology 8:854–856

    Article  Google Scholar 

  • Tessmar JK, Gopferich AM (2007) Customized PEG-derived copolymers for tissue-engineering applications. Macromol Biosci 7:23–39

    Article  Google Scholar 

  • Tsuda Y, Kikuchi A, Yamato M et al (2004) Control of cell adhesion and detachment using temperature and thermoresponsive copolymer grafted culture surfaces. J Biomed Mater Res A 69:70–78

    Article  Google Scholar 

  • Tsuda Y, Kikuchi A, Yamato M et al (2005) The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials 26:1885–1893

    Article  Google Scholar 

  • Tsuda Y, Shimizu T, Yarnato M et al (2007) Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials 28:4939–4946

    Article  Google Scholar 

  • Van Tomme SR, Hennink WE (2007) Biodegradable dextran hydrogels for protein delivery applications. Expert Rev Med Devic 4:147–164

    Article  Google Scholar 

  • von Recum H, Okano T, Kim SW (1998) Growth factor release from thermally reversible tissue culture substrates. J Control Release 55:121–130

    Article  Google Scholar 

  • Werner C (ed) (2006) Polymers for regenerative medicine. Springer, Berlin Heidelberg

    Google Scholar 

  • West JL, Hubbell JA (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32:241–244

    Article  Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  • Yamada N, Okano T, Sakai H et al (1990) Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Macromol Chem Rapid Commun 11:571–576

    Article  Google Scholar 

  • Yamaguchi N, Kiick KL (2005) Polysaccharide-poly(ethylene glycol) star copolymer as a scaffold for the production of bioactive hydrogels. Biomacromolecules 6:1921–1930

    Article  Google Scholar 

  • Yamaguchi N, Chae BS, Zhang L et al (2005) Rheological characterization of polysaccharide-poly(ethylene glycol) star copolymer hydrogels. Biomacromolecules 6:1931–1940

    Article  Google Scholar 

  • Yamaguchi N, Zhang L, Chae BS et al (2007) Growth factor mediated assembly of cell receptor-responsive hydrogels. J Am Chem Soc 129:3040–3041

    Article  Google Scholar 

  • Yamato M, Akiyama Y, Kobayashi H et al (2007) Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering. Prog Polym Sci 32:1123–1133

    Article  Google Scholar 

  • Zhang L, Furst EM, Kiick KL (2006) Manipulation of hydrogel assembly and growth factor delivery via the use of peptide-polysaccharide interactions. J Control Release 114:130–142

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Werner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Welzel, P. et al. (2009). Polymer Hydrogels to Enable New Medical Therapies. In: Gerlach, G., Arndt, KF. (eds) Hydrogel Sensors and Actuators. Springer Series on Chemical Sensors and Biosensors, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75645-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75645-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75644-6

  • Online ISBN: 978-3-540-75645-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics