Skip to main content

Abstract

In the analysis of coupled systems, various techniques have been developed to model and detect dependencies from observed bivariate time series. Most well-founded methods, like Granger-causality and partial coherence, are based on the theory of linear systems: on correlation functions, spectra and vector autoregressive processes. In this paper we discuss a nonlinear approach using recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Amigó, M.B. Kennel, and L. Kocarev. The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems. Physica D, 210(l–2):77–95, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  2. J.H. Argyris, G. Faust, and M. Haase. An Exploration of Chaos. North Holland, Amsterdam, 1994.

    Google Scholar 

  3. C. Bandt. Ordinal time series analysis. Ecological Modelling, 182: 229–238, 2005.

    Article  Google Scholar 

  4. C. Bandt and B. Pompe. Permutation entropy: A natural complexity measure for time series. Physical Review Letters, 88:174102, 2002.

    Article  Google Scholar 

  5. C. Bandt and F. Shiha. Order patterns in time series. Journal of Time Series Analysis, 28:646–665, 2007.

    Article  Google Scholar 

  6. C. Bandt, G. Keller, and B. Pompe. Entropy of interval maps via permutations. Nonlinearity, 15:1595–1602, 2002.

    Article  MathSciNet  Google Scholar 

  7. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, editors. Biological Sequence Analysis. Cambridge University Press, Cambridge, 1998.

    MATH  Google Scholar 

  8. J.-P. Eckmann, S.O. Kamphorst, and D. Ruelle. Recurrence plots of dynamical systems. Europhysics Letters, 4:973–977, 1987.

    Article  Google Scholar 

  9. T.S. Ferguson, C. Genest, and M. Hallin. Kendall’ tau for serial dependence. The Canadian Journal of Statistics, 28(3):587–604, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Frisch, P. beim Graben, and M. Schlesewsky. Parallelizing grammatical functions: P600 and p345 reflect different cost of reanalysis. International Journal of Bifurcation and Chaos, 14(2):531–549, 2004.

    Article  Google Scholar 

  11. A. Goettlein and H. Pruscha. Advances in GLIM and Statistical Modeling, volume 78, pages 113–118. Springer, New York, 1992.

    Google Scholar 

  12. A. Groth. Visualization of coupling in time series by order recurrence plots. Physical Review E, 72:046220, 2005.

    Article  Google Scholar 

  13. M. Hallin and J. Jurečkova. Optimal tests for autoregressive models based on autoregression rank scores. The Annals of Statistics, 27(4): 1385–1414, 1999.

    Article  MathSciNet  Google Scholar 

  14. T.C. Handy, editor. Event-Related Potentials. MIT Press, Cambridge, Mass., 2005.

    Google Scholar 

  15. H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge University Press, Cambridge, second edition, reprint edition, 2005.

    Google Scholar 

  16. M.G. Kendall and J.D. Gibbons. Rank Correlation Methods. Oxford University Press, New York, 5th edition, 1990.

    MATH  Google Scholar 

  17. I.Z. Kiss, Q. Lv, and J.L. Hudson. Synchronization of non-phase coherent chaotic electrochemical oscillations. Physical Review E, 71:035201, 2005.

    Article  Google Scholar 

  18. E.N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20:120–141, 1963.

    Article  Google Scholar 

  19. N. Marwan and J. Kurths. Nonlinear analysis of bivariate data with cross recurrence plots. Physics Letters A, 302(5–6):299–307, 2002.

    MathSciNet  Google Scholar 

  20. N. Marwan, M.C. Romano, M. Thiel, and J. Kurths. Recurrence plots for the analysis of complex systems. Physics Reports, 438(5–6):237–329, 2007.

    Article  MathSciNet  Google Scholar 

  21. F. Mormann, K. Lehnertz, P. David, and C.E. Elger. Mean phase coherence as a measure for phase synchronization and its application to the eeg of epilepsy patients. Physica D, 144:358–369, 2000.

    Article  MATH  Google Scholar 

  22. G. Osipov, B. Hu, C. Zhou, M. Ivanchenko, and J. Kurths. Three types of transition to phase synchronization in coupled chaotic oscillators. Physical Review Letters, 91(2):024101, 2003.

    Article  Google Scholar 

  23. K. Petersen. Ergodic Theory. Cambridge University Press, Cambridge, 1983.

    Google Scholar 

  24. A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization — A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  25. R. Quian Quiroga, T. Kreuz, and P. Grassberger. Event synchronization: A simple and fast method to measure synchronicity and time delay patterns. Physical Review E66:041904, 2002.

    MathSciNet  Google Scholar 

  26. M.C. Romano, M. Thiel, J. Kurths, I.Z. Kiss, and J.L. Hudson. Detection of synchronization for non-phase-coherent and non-stationary data. Europhysics Letters, 71(3):466–472, 2005.

    Article  Google Scholar 

  27. M.C. Romano, M. Thiel, J. Kurths, and W. von Bloh. Multivariate recurrence plots. Physics Letters A, 330(3–4):214–223, 2004.

    Article  MathSciNet  Google Scholar 

  28. M. Rosenblum, A. Pikovsky, and K. Kurths. Phase synchronization of chaotic oscillators. Physical Review Letters, 76(11):1804–1807, 1996.

    Article  Google Scholar 

  29. M.G. Rosenblum, A.S. Pikovsky, and J. Kurths. From phase to lag synchronization in coupled chaotic oscillators. Physical Review Letters, 78(22):4193–4196, 1997.

    Article  Google Scholar 

  30. O.E. Rössler. An equation for continuous chaos. Physics Letters A, 57(5):397–398, 1976.

    Article  Google Scholar 

  31. T. Sauer, J.A. Yorke, and M. Casdagli. Embedology. Journal of Statistical Physics, 65(3–4):579–616, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  32. R.H. Shumway and D.S. Stoffer. Time Series Analysis and Its Applications. Springer, New York, 2006.

    MATH  Google Scholar 

  33. O.V. Sosnovtseva, A.G. Balanov, T. E. Vadivasova, V. V. Astakhov, and E. Mosekilde. Loss of lag synchronization in coupld chaotic systems. Physical Review E, 60(6):6560–6565, 1999.

    Article  Google Scholar 

  34. S.S. Stevens. On the theory of scales of measurement. Science, 103: 677–680, 1946.

    Article  Google Scholar 

  35. F. Takens. Detecting strange attractors in turbulence. Lecture Notes in Mathematics, volume 898, pages 366–381. Springer, Berlin, 1981.

    Google Scholar 

  36. P. Tass, M. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnitzler, and H.-J. Freund. Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Physical Review Letters, 81(15):3291–3294, 1998.

    Article  Google Scholar 

  37. M. Thiel, M.C. Romano, P.L. Read, and J. Kurths. Estimation of dynamical invariants without embedding by recurrence plots. Chaos, 14(2):234–243, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  38. J.P. Zbilut and Charles L. Webber, Jr. Embeddings and delays as derived from quantification of recurrence plots. Physics Letters A, 171(3–4): 199–203, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bandt, C. et al. (2008). Analysis of Bivariate Coupling by Means of Recurrence. In: Dahlhaus, R., Kurths, J., Maass, P., Timmer, J. (eds) Mathematical Methods in Signal Processing and Digital Image Analysis. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75632-3_5

Download citation

Publish with us

Policies and ethics