Skip to main content

3-Valued Circuit SAT for STE with Automatic Refinement

  • Conference paper
Automated Technology for Verification and Analysis (ATVA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4762))

Abstract

Symbolic Trajectory Evaluation (STE) is a powerful technique for hardware model checking. It is based on a 3-valued symbolic simulation, using 0,1 and X (”unknown”), where the X is used to abstract away values of the circuit nodes.

Most STE tools are BDD-based and use a dual rail representation for the three possible values of circuit nodes. SAT-based STE tools typically use two variables for each circuit node, to comply with the dual rail representation.

In this work we present a novel 3-valued Circuit SAT-based algorithm for STE. The STE problem is translated into a Circuit SAT instance. A solution for this instance implies a contradiction between the circuit and the STE assertion. An unSAT instance implies either that the assertion holds, or that the model is too abstract to be verified. In case of a too abstract model, we propose a refinement automatically.

We implemented our 3-Valued Circuit SAT-based STE algorithm and applied it successfully to several STE examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using SAT procedures instead of BDDs. In: DAC, IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  2. Bjesse, P., Leonard, T., Mokkedem, A.: Finding bugs in an alpha microprocessor using satisfiability solvers. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 454–464. Springer, Heidelberg (2001)

    Google Scholar 

  3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. Journal of the ACM 50(5), 752–794 (2003)

    Article  MathSciNet  Google Scholar 

  4. Classen, K., Roorda, J.-W.: A new SAT-based algorithm for symbolic trajectory evaluation. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, Springer, Heidelberg (2005)

    Google Scholar 

  5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. CACM 5(7) (July 1962)

    Google Scholar 

  6. Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7(3), 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fujiwara, H., Shimono, T.: On the acceleration of test generation algorithms. IEEE Trans. Computers 32(12), 1137–1144 (1983)

    Article  Google Scholar 

  8. Ganai, M.K., Ashar, P., Gupta, A., Zhang, L., Malik, S.: Combining Strengths of Circuit-Based and CNF-Based Algorithms for a High-Performance SAT Solver. In: DAC (2002)

    Google Scholar 

  9. Grumberg, O., Schuster, A., Yadgar, A.: Hybrid BDD and all-sat method for model checking and other application. Technical report, Technion, CS-2007-08  (2007)

    Google Scholar 

  10. Jin, H., Awedh, M., Somenzi, F.: CirCUs: A Satisfiability Solver Geared towards Bounded Model Checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, Springer, Heidelberg (2004)

    Google Scholar 

  11. Lu, F., Wang, L.C., Cheng, K.-T., Huang, R.C.Y.: A Circuit SAT Solver With Signal Correlation Guided Learning. In: DATE 2003, p. 10892. IEEE Computer Society Press, Washington (2003)

    Google Scholar 

  12. Marques-Silva, J.P., Sakallah, K.A.: Conflict analysis in search algorithms for propositional satisfiability. In: IEEE ICTAI (1996)

    Google Scholar 

  13. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: DAC 2001. 39th Design Aotomation Conference (2001)

    Google Scholar 

  14. Pandey, M., Raimi, R., Bryant, R.E., Abadir, M.S.: Formal verification of content addressable memories using symbolic trajectory evaluation. dac, 00, 167 (1997)

    Google Scholar 

  15. Roorda, J.-W.: Symbolic trajectory evaluation using a satisfiability solver. Licentiate Thesis (2005)

    Google Scholar 

  16. Roorda, J.-W., Claessen, K.: Sat-based assistance in abstraction refinement for symbolic trajectory evaluation. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 175–189. Springer, Heidelberg (2006)

    Google Scholar 

  17. Schubert, T.: High level formal verification of next-generation microprocessors. In: DAC (2003)

    Google Scholar 

  18. Seger, C.-J.H., Bryant, R.E.: Formal verification by symbolic evaluation of partially-ordered trajectories. Formal Methods in System Design 6(2) (1995)

    Google Scholar 

  19. Seger, C.-J.H., Jones, R.B., O’Leary, J.W., Melham, T.F., Aagaard, M., Barrett, C., Syme, D.: An industrially effective environment for formal hardware verification. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 24(9) (2005)

    Google Scholar 

  20. Tzoref, R., Grumberg, O.: Automatic refinement and vacuity detection for symbolic trajectory evaluation. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 190–204. Springer, Heidelberg (2006)

    Google Scholar 

  21. Yang, J., Gil, R., Singerman, E.: satGSTE: Combining the abstraction of GSTE with the capacity of a SAT solver. In: DCC (2004)

    Google Scholar 

  22. Yang, J., Goel, A.: GSTE through a case study. In: ICCAD (2002)

    Google Scholar 

  23. Zhang, H.: SATO: An efficient propositional prover. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, Springer, Heidelberg (1997)

    Google Scholar 

  24. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in boolean satisfiability solver. In: ICCAD (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kedar S. Namjoshi Tomohiro Yoneda Teruo Higashino Yoshio Okamura

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grumberg, O., Schuster, A., Yadgar, A. (2007). 3-Valued Circuit SAT for STE with Automatic Refinement. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds) Automated Technology for Verification and Analysis. ATVA 2007. Lecture Notes in Computer Science, vol 4762. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75596-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75596-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75595-1

  • Online ISBN: 978-3-540-75596-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics