Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 15))

Soil bacteria and archaea first evolved as principal inhabitants of primordial environments, and then in association with fungi, plants and animals as new environments emerged. Thus, transitions occurred, which did not correspond to a replacement of ancient processes by new ones, but to a superposition or accretion of processes. The maintenance of primordial environments depends on the development of complexity to compensate for the effects of increasing diversity. Much of the persistence that is observed along the biological history of soils depends on symbiogenesis, which might be understood in terms, not of natural selection among biological systems, but of natural maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925-931

    PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824-827

    PubMed  Google Scholar 

  • Albrecht C, Geurts R, Bisseling T (1999) Legume nodulation and mycorrhizae formation; two extremes in host specificity meet. EMBO J 18:281-288

    PubMed  Google Scholar 

  • Andersson SGE, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6:263-268

    PubMed  Google Scholar 

  • Ané J-M, Kiss, GB, Riely, BK et al. (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364-1367

    PubMed  Google Scholar 

  • Artursson V, Jansson JK (2003) Use of bromodeoxyuridine immunocapture to identify active bac-teria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol 69:6208-6215

    PubMed  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1-10

    PubMed  Google Scholar 

  • Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA 96:3404-3411

    PubMed  Google Scholar 

  • Battistuzzi F, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4:44

    PubMed  Google Scholar 

  • Beaulieu J-P, Bennett DP, Fouqué P et al. (2006) Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439:437-440

    PubMed  Google Scholar 

  • Beller HR, Chain PSG, Letain TE et al. (2006) The genome sequence of the obligately chemo-lithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188:1473-1488

    PubMed  Google Scholar 

  • Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181-189 Bern M, Goldberg D (2005) Automatic selection of representative proteins for bacterial phylog-eny. BMC Evol Biol 5:34

    Google Scholar 

  • Beukes NJ, Dorland H, Gutzmer J, Nedachi M, Ohmoto H (2002) Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology 30:491-494

    Google Scholar 

  • Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. Antonie van Leeuwenhoek 81:365-371

    PubMed  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Mucoid mutants of the bio-control strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant Microbe Interact 14:255-260

    PubMed  Google Scholar 

  • Bonfante P (2003) Plants, mycorrhizal fungi and endobacteria: a dialog among cells and genomes. Biol Bull 204:215-220

    PubMed  Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224-230

    PubMed  Google Scholar 

  • Brencic A, Angert ER, Winans SC (2005) Unwounded plants elicit Agrobacterium vir gene induc-tion and T-DNA transfer: transformed plant cells produce opines yet are tumour free. Mol Microbiol 57:1522-1531

    PubMed  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033-1036

    PubMed  Google Scholar 

  • Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28:281-285

    PubMed  Google Scholar 

  • Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a micro-scale. Curr Opin Microbiol 3:263-269

    PubMed  Google Scholar 

  • Büdel B, Weber B, Kühl M, Pfanz H, Sültemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261-268

    Google Scholar 

  • Buscot F (2005) What are soils? In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin Heidelberg New York, pp 3-17

    Google Scholar 

  • Bywater RP, Conde-Frieboes K (2005) Did life begin on the beach? Astrobiology 5:568-574

    PubMed  Google Scholar 

  • Cabello P, Roldán MD, Moreno-Vivián C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150:3527-3546

    PubMed  Google Scholar 

  • Canbäck B, Tamas I, Andersson SGE (2004) A phylogenomic study of endosymbiotic bacteria. Mol Biol Evol 21:1110-1122

    PubMed  Google Scholar 

  • Canfield DE (2006) Gas with an ancient history. Nature 440:426-427

    PubMed  Google Scholar 

  • Canfield DE, Habicht KS, Thamdrup B (2000) The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288:658-661

    PubMed  Google Scholar 

  • Carroll RL (2001) The origin and early radiation of terrestrial vertebrates. J Paleont 75:1202-1213

    Google Scholar 

  • Castresana J, Moreira D (1999) Respiratory chains in the last common ancestor of living organisms. J Mol Evol 49:453-460

    PubMed  Google Scholar 

  • Catling DC, Zahnle KJ, McKay C (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293:839-843

    PubMed  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287

    PubMed  Google Scholar 

  • Crawford JW, Harris JA, Ritz K, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81-87

    PubMed  Google Scholar 

  • Crispim CA, Gaylarde PM, Gaylarde CC (2003) Algal and cyanobacterial biofilms on calcareous historic buildings. Curr Microbiol 46:79-82

    PubMed  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847-867

    PubMed  Google Scholar 

  • Davis EL, Mitchum MG (2005) Nematodes. Sophisticated parasites of legumes. Plant Physiol 137:1182-1188

    PubMed  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795-811

    PubMed  Google Scholar 

  • Denison RF, Kiers ET (2004) Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgo-ing symbiosis. FEMS Microbiol Lett 237:187-193

    PubMed  Google Scholar 

  • Douzery EJP, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolu-tion: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci USA 101:15386-15391

    PubMed  Google Scholar 

  • Egert M, Wagner B, Lemke T, Brune A, Friedrich MW (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera:Scarabaeidae). Appl Environ Microbiol 69:6659-6668

    PubMed  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, Cooper, San Francisco, pp 82-115

    Google Scholar 

  • Elshahed MS, Senko JM, Najar FZ et al. (2003) Bacterial diversity and sulfur cycling in a mes-ophilic sulfide-rich spring. Appl Environ Microbiol 69:5609-5621

    PubMed  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló P, Kiss GB (2002) A receptor kinase gene regulat-ing symbiotic nodule development. Nature 417:962-966

    PubMed  Google Scholar 

  • Ferguson GP, Datta A, Baumgartner J, Roop RM II, Carlson RW, Walker GC (2004) Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc Natl Acad Sci USA 101:5012-5017

    PubMed  Google Scholar 

  • ffrench-Constant R, Waterfield N, Daborn P et al. (2003) Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev 26:433-456

    PubMed  Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873-2882

    PubMed  Google Scholar 

  • Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492-1495

    PubMed  Google Scholar 

  • Gaylarde CC, Gaylarde PM (2005) A comparative study of the major microbial biomass of bio-films on exteriors of buildings in Europe and Latin America. Int Biodeterior Biodegrad 55:131-139

    Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infec-tion. Plant Cell 17:3489-3499

    PubMed  Google Scholar 

  • Gevertz D, Telang AJ, Voordouw G, Jenneman GE (2000) Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66:2491-2501

    PubMed  Google Scholar 

  • Gilbert OM, Foster KR, Mehdiabadi NJ, Strassmann JE, Queller DC (2007) High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants. Proc Natl Acad Sci USA 104:8913-8917

    PubMed  Google Scholar 

  • Giraud E, Moulin L, Vallenet D et al. (2007) Legumes symbioses: absence of nod genes in photo-synthetic bradyrhizobia. Science 316:1307-1312

    PubMed  Google Scholar 

  • Gorbushina AA, Krumbein WE (2005) Role of microorganisms in wear down of rocks and miner-als. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin Heidelberg New York, pp 59-84

    Google Scholar 

  • Grassineau NV, Nisbet EG, Bickle MJ et al. (2001) Antiquity of the biological sulphur cycle: evi-dence from sulphur and carbon isotopes in 2700 million-year-old rocks of the Belingwe Belt, Zimbabwe. Proc R Soc Lond B 268:113-119

    Google Scholar 

  • Guerrero R, Piqueras M, Berlanga M (2002) Microbial mats and the search for minimal ecosys-tems. Int Microbiol 5:177-188

    PubMed  Google Scholar 

  • Guest H (1994) Discovery of the heliobacteria. Photosynth Res 41:17-21

    Google Scholar 

  • Güimil S, Chang H-S, Zhu T et al. (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066-8070

    PubMed  Google Scholar 

  • Gutzmer J, Beukes NJ (1998) Earliest laterites and possible evidence for terrestrial vegetation in the Early Proterozoic. Geology 26:263-266

    Google Scholar 

  • Haaijer SCM, Van der Welle MEW, Schmid MC, Lamers LPM, Jetten MSM, Op den Camp HJM (2006) Evidence for the involvement of betaproteobacterial Thiobacilli in the nitrate-dependent oxidation of iron sulfide minerals. FEMS Microbiol Ecol 58:439-448

    PubMed  Google Scholar 

  • Harb OS, Gao L-Y, Kwaik YA (2000) From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ Microbiol 2:251-265

    PubMed  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19-42

    PubMed  Google Scholar 

  • Hawksworth DL (1988) The fungal partner. In: Galun M (ed) CRC handbook of lichenology. CRC Press, Boca Raton, FL., pp 35-38

    Google Scholar 

  • He J, Baldini RL, Deziel E et al. (2004a) The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci USA 101:2530-2535

    PubMed  Google Scholar 

  • He SY, Nomura K, Whittam TS (2004b) Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 1694:181-206

    PubMed  Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evi-dence for the early colonization of land by fungi and plants. Science 293:1129-1133

    PubMed  Google Scholar 

  • Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838-849

    PubMed  Google Scholar 

  • Hentschel U, Steinert M, Hacker J (2000) Common molecular mechanisms of symbiosis and pathogenesis. Trends Microbiol 8:226-231

    PubMed  Google Scholar 

  • Herzenberg LA, Herzenberg LA (1989) Toward a layered immune system. Cell 59:953-954

    PubMed  Google Scholar 

  • Hirsch AM, Lum MR, Downie JA (2001) What makes the rhizobia-legume symbiosis so special? Plant Physiol 127:1484-1492

    PubMed  Google Scholar 

  • Hoeft SE, Kulp TR, Stolz JF, Hollibaugh JT, Oremland RS (2004) Dissimilatory arsenate reduction with sulfide as electron donor: experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer. Appl Environ Microbiol 70:2741-2747

    PubMed  Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66:3811-3826

    Google Scholar 

  • Hollibaugh JT, Budinoff C, Hollibaugh RA, Ransom B, Bano N (2006) Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake. Appl Environ Microbiol 72:2043-2049

    PubMed  Google Scholar 

  • Horn MA, Drake HL, Schramm A (2006) Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar. Appl Environ Microbiol 72:1019-1026

    PubMed  Google Scholar 

  • Horodyski RJ, Knauth LPS (1994) Life on land in the Precambrian. Science 263:494-498

    PubMed  Google Scholar 

  • Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555-565

    PubMed  Google Scholar 

  • Jackson CR, Dugas SL (2003) Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase. BMC Evol Biol 3:18 Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16 S rRNA and 16 S rRNA genes. Appl Environ Microbiol 72:1719-1728

    Google Scholar 

  • Jargeat P, Cosseau C, Ola’h B et al. (2004) Isolation, free-living capacities, and genome structure of “Candidatus Glomeribacter gigasporarum,” the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita. J Bacteriol 186:6876-6884

    PubMed  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22-29

    PubMed  Google Scholar 

  • Kasting JF, Catling D (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41:429-463

    Google Scholar 

  • Kelly DP, Shergill JK, Lu W-P, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71:95-107

    PubMed  Google Scholar 

  • Kennedy M, Droser M, Mayer LM, Pevear D, Mrofka D (2006) Late Precambrian oxygenation; inception of the clay mineral factory. Science 311:1446-1449

    PubMed  Google Scholar 

  • Kistner C, Winzer T, Pitzschke A et al. (2005) Seven Lotus japonicus genes required for transcrip-tional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217-2229

    PubMed  Google Scholar 

  • Klasson L, Andersson SGE (2004) Evolution of minimal-gene-sets in host-dependent bacteria. Trends Microbiol 12:37-43

    PubMed  Google Scholar 

  • Kluge M (2002) A fungus eats a cyanobacterium: the story of the Geosiphon pyriformis endocya-nosis. Biol Environ 102B:11-14

    Google Scholar 

  • Kooijman SALM, Hengeveld R (2005) The symbiontic nature of metabolic evolution. In: Reydon TAC, Hemerik L (eds) Current themes in theoretical biology. Springer, Berlin Heidelberg New York, pp 159-202

    Google Scholar 

  • Kühl M, Jørgensen BB (1992) Microsensor measurements of sulfate reduction and sulfide oxida-tion in compact microbial communities of aerobic biofilms. Appl Environ Microbiol 58:1164-1174

    PubMed  Google Scholar 

  • Kurland CG, Andersson SGE (2000) Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 64:786-820

    PubMed  Google Scholar 

  • Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312:1011-1014

    PubMed  Google Scholar 

  • LeVier K, Phillips RW, Grippe VK, Roop RM II, Walker GC (2000) Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science 287:2492-2493

    PubMed  Google Scholar 

  • Lévy J, Bres C, Geurts R et al. (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361-1364

    PubMed  Google Scholar 

  • Liengen T (1999) Environmental factors influencing the nitrogen fixation activity of free-living terrestrial cyanobacteria from a high arctic area, Spitsbergen. Can J Microbiol 45:573-581

    Google Scholar 

  • Lloret L, Martínez-Romero E (2005) Evolución y filogenia de Rhizobium. Rev Latinoameric Microbiol 47:43-60

    Google Scholar 

  • Lodwig EM, Hosie AHF, Bourdes A et al. (2003) Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. 422:722-726

    Google Scholar 

  • Lutzoni F, Pagel M (1997) Accelerated evolution as a consequence of transitions to mutualism. Proc Natl Acad Sci USA 94:11422-11427

    PubMed  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937-940

    PubMed  Google Scholar 

  • Lynch M (2006) The origins of eukaryotic gene structure. Mol Biol Evol 23:450-468

    PubMed  Google Scholar 

  • Mancinelli RL, McKay CP (1988) The evolution of nitrogen cycling. Origins Life Evol Biosphere 18:311-325

    Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Megonigal JP, Hines ME, Visscher PT (2005) Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger WH (ed) Biogeochemistry, vol 8, Treatise on geochemistry (eds Holland HD, Turekian KK). Elsevier-Pergamon, Oxford

    Google Scholar 

  • Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length poly-morphism analysis. Appl Environ Microbiol 70:6580-6586

    PubMed  Google Scholar 

  • Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71:20-28

    PubMed  Google Scholar 

  • Moran NA, Plague GR (2004) Genomic changes following host restriction in bacteria. Curr Opin Genet Dev 14:627-633

    PubMed  Google Scholar 

  • Morris CE, Monier J-M (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429-453

    PubMed  Google Scholar 

  • Müller-Hill B (2006) What is life? The paradigm of DNA and protein cooperation at high local concentrations. Mol Microbiol 60:253-255

    PubMed  Google Scholar 

  • Neumeister B, Reiff G, Faigle M, Dietz K, Northoff H, Lang F (2000) Influence of Acanthamoeba castellanii on intracellular growth of different Legionella species in human monocytes. Appl Environ Microbiol 66:914-919

    PubMed  Google Scholar 

  • Nisbet EG, Fowler CMR (1999) Archaean metabolic evolution of microbial mats. Proc R Soc Lond B 266:2375-2382

    Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083-1091

    PubMed  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: Striking similarities and obvious differences. Immunol Rev 198:249-266

    PubMed  Google Scholar 

  • Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:1096-1099

    PubMed  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939-944

    PubMed  Google Scholar 

  • Ormerod JG, Kimble LK, Nesbakken T, Torgersen YA, Woese CR, Madigan MT (1996) Heliophilum fasciatum gen. nov. sp. nov. and Heliobacterium gestii sp. nov.: Endospore-forming heliobacteria from rice field soils. Arch Microbiol 165:226-234

    PubMed  Google Scholar 

  • Padan E (1979) Facultative anoxygenic photosynthesis in cyanobacteria. Annu Rev Plant Physiol 30:27-40

    Google Scholar 

  • Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic produc-tion and biogeochemical cycling. Microb Ecol 31:225-247

    PubMed  Google Scholar 

  • Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320-328

    PubMed  Google Scholar 

  • Peters V, Conrad R (1995) Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol 61:1673-1676

    PubMed  Google Scholar 

  • Phillips DA, Ferris H, Cook DR, Strong DR (2003) Molecular control points in rhizosphere food webs. Ecology 84:816-826

    Google Scholar 

  • Pisani D, Poling L, Lyons-Weiler M, Hedges S (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol 2:1. DOI: 10.1186/1741-7007-2-1

    PubMed  Google Scholar 

  • Pitman AR, Jackson RW, Mansfield JW, Kaitell V, Thwaites R, Arnold DL (2005) Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Curr Biol 15:2230-2235

    PubMed  Google Scholar 

  • Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7:602-609

    PubMed  Google Scholar 

  • Raven JA (2002) The evolution of cyanobacterial symbioses. Biol Environ 102B:3-6

    Google Scholar 

  • Raven JA, Edwards D (2001) Roots: evolutionary origins and biogeochemical significance. J Exp Bot 52:381-401

    PubMed  Google Scholar 

  • Raymond J, Segrè D (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764-1767

    PubMed  Google Scholar 

  • Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in “lower” land plants. Phil Trans R Soc Lond B 355:815-831

    Google Scholar 

  • Retallack GJ (2001) Soils of the past. An introduction to paleopedology, 2nd edn. Blackwell Science, Oxford

    Google Scholar 

  • Retallack GJ (2003) Soils and global change in the carbon cycle over geological time. In: Drever JI (ed) Treatise on geochemistry, vol 5. Elsevier, Amsterdam, pp 581-605

    Google Scholar 

  • Rippka R (1988) Recognition and identification of cyanobacteria. Method Enzymol 167:28-67

    Google Scholar 

  • Roossinck MJ (2005) Symbiosis versus competition in plant virus evolution. Nat Rev Micro 3:917-924

    Google Scholar 

  • Rudgers JA, Mattingly WB, Koslow JM (2005) Mutualistic fungus promotes plant invasion into diverse communities. Oecologia 144:463-471

    PubMed  Google Scholar 

  • Rye R, Holland HD (1998) Paleosols and the evolution of atmospheric oxygen: a critical review. Am J Sci 298:621-672

    PubMed  Google Scholar 

  • Saffo MB (2002) Themes from variation: probing the commonalities of symbiotic associations. Integr Comp Biol 42:291-294

    Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275-280

    PubMed  Google Scholar 

  • Sánchez-Baracaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology 3:145-165

    Google Scholar 

  • Scholl E, Thorne J, McCarter J, Bird DMcK (2003) Horizontally transferred genes in plant-parasitic nematodes: a high-throughput genomic approach. Genome Biol 4:R39

    PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661-686 Schüßler A (2000) Glomus claroideum forms an arbuscular mycorrhiza-like symbiosis with the hornwort Anthoceros punctatus. Mycorrhiza 10:15-21

    Google Scholar 

  • Schüßler A (2002) Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant Soil 244:75-83

    Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylog-eny and evolution. Mycol Res 105:1413-1421

    Google Scholar 

  • Selosse M-A, Le Tacon F (1998) The land flora: a phototroph-fungus partnership? Trends Ecol Evolut 13:15-20

    Google Scholar 

  • Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77-81

    PubMed  Google Scholar 

  • Sprenger W, van Belzen M, Rosenberg J, Hackstein J, Keltjens J (2000) Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50:1989-1999

    PubMed  Google Scholar 

  • Stacey G, Libault M, Brechenmacher L, Wan J, May GD (2006) Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 9:110-121

    PubMed  Google Scholar 

  • Stevenson AK, Kimble LK, Woese CR, Madigan MT (1997) Characterization of new phototrophic heliobacteria and their habitats. Photosynth Res 53:1-12

    Google Scholar 

  • Stracke S, Kistner C, Yoshida S et al. (2002) A plant receptor-like kinase required for both bacte-rial and fungal symbiosis. Nature 417:959-962

    PubMed  Google Scholar 

  • Strobel G (2006) Muscodor albus and its biological promise. J Indust Microbiol Biotechnol 33:514-522

    Google Scholar 

  • Szczyglowski K, Amyot L (2003) Symbiosis, inventiveness by recruitment? Plant Physiol 131:935-940

    PubMed  Google Scholar 

  • Tamas I, Klasson L, Canback B et al. (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376-2379

    PubMed  Google Scholar 

  • Teske A, Dhillon A, Sogin ML (2003) Genomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis, and methane oxidation. Biol Bull 204:186-191

    PubMed  Google Scholar 

  • Thompson JN, Nuismer SL, Gomulkiewicz R (2002) Coevolution and maladaptation. Integr Comp Biol 42:381-387

    Google Scholar 

  • Tiedje J, Sexstone A, Parkin T, Revsbech N (1984) Anaerobic processes in soil. Plant Soil 76:197-212

    Google Scholar 

  • Tokuda G, Yamaoka I, Noda H (2000) Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl Environ Microbiol 66:2199-2207

    PubMed  Google Scholar 

  • Tomov AT, Tsvetkova ED, Tomova IA, Michailova LI, Kassovski VK (1999) Persistence and multiplication of obligate anaerobe bacteria in amoebae under aerobic conditions. Anaerobe 5:19-23

    PubMed  Google Scholar 

  • Towe KM, Catling D, Zahnle K, McKay C (2002) The problematic rise of Archean oxygen. Science 295:1419-1421

    PubMed  Google Scholar 

  • Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440:516-519

    PubMed  Google Scholar 

  • Velicer GJ (2003) Social strife in the microbial world. Trends Microbiol 11:330-337

    PubMed  Google Scholar 

  • Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011-1014

    PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H et al. (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386-13391

    PubMed  Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343-368

    Google Scholar 

  • Watanabe Y, Martini JEJ, Ohmoto H (2000) Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature 408:574-578

    PubMed  Google Scholar 

  • Weerasinghe RR, Bird DMcK, Allen NS (2005) Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proc Natl Acad Sci USA 102:3147-3152

    PubMed  Google Scholar 

  • Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282-285

    PubMed  Google Scholar 

  • Wernegreen J, Moran N (1999) Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein-coding genes. Mol Biol Evol 16:83-97

    PubMed  Google Scholar 

  • Winiecka-Krusnella J, Linder E (2001) Bacterial infections of free-living amoebae. Res Microbiol 152:613-619

    Google Scholar 

  • Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742-8747

    PubMed  Google Scholar 

  • Wolf YI, Rogozin IB, Grishin NV, Tatusov RL, Koonin EV (2001) Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1:8

    PubMed  Google Scholar 

  • Wren BW (2000) Microbial genome analysis: insights into virulence, host adaptation and evolu-tion. Nat Rev Genet 1:30-39

    PubMed  Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724-1730

    PubMed  Google Scholar 

  • Yoneyama K, Takeuchi Y, Yokota T (2001) Production of clover broomrape seed germination stimulants by red clover root requires nitrate but is inhibited by phosphate and ammonium. Physiol Planta 112:25-30

    Google Scholar 

  • Young IM, Crawford JW (2004) Interactions and self-organization in the soil-microbe complex. Science 304:1634-1637

    PubMed  Google Scholar 

  • Young IM, Ritz K (2000) Tillage, habitat space and function of soil microbes. Soil Tillage Res 53:201-213

    Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017-1020

    PubMed  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B, Hooykaas PJJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885-3895

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dion, P. (2008). Reconstructing Soil Biology. In: Nautiyal, C.S., Dion, P. (eds) Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75575-3_3

Download citation

Publish with us

Policies and ethics