Skip to main content

Improving Inversion Median Computation Using Commuting Reversals and Cycle Information

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4751))

Abstract

In the past decade, genome rearrangements have attracted increasing attention from both biologists and computer scientists as a new type of data for phylogenetic analysis. Methods for reconstructing phylogeny from genome rearrangements include distance-based methods, MCMC methods and direct optimization methods. The latter, pioneered by Sankoff and extended with the software suite GRAPPA and MGR, is the most accurate approach, but is very limited due to the difficulty of its scoring procedure–it must solve multiple instances of median problem to compute the score of a given tree. The median problem is known to be NP-hard and all existing solvers are extremely slow when the genomes are distant. In this paper, we present a new inversion median heuristic for unichromisomal genomes. The new method works by applying sets of reversals in a batch where all such reversals both commute and do not break the cycle of any other. Our testing using simulated datasets shows that this method is much faster than the leading solver for difficult datasets with only a slight accuracy penalty, yet retains better accuracy than other heuristics with comparable speed. This new method will dramatically increase the speed of current direct optimization methods and enables us to extend the range of their applicability to organellar and small nuclear genomes with more than 50 inversions along each edge. As a further improvement, this new method can very quickly produce reasonable solutions to problems with hundreds of genes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, D.A., Moret, B.M.E., Yan, M.: A fast linear-time algorithm for inversion distance with an experimental comparison. J. Comput. Biol. 8(5), 483–491 (2001)

    Article  Google Scholar 

  2. Bernt, M., Merkle, D., Middendorf, M.: Genome rearrangement based on reversals that preserve conserved intervals. IEEE/ACM Trans. on Comput. Biol. and Bioinfo. 3(3), 275–288 (2006)

    Article  Google Scholar 

  3. Bernt, M., Merkle, D., Middendorf, M.: Using median sets for inferring phylogenetic trees. Bioinformatics 23(2), 129–135 (2007)

    Article  Google Scholar 

  4. Blanchette, M., Sankoff, D.: The median problem for breakpoints in comparative genomics. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 251–263. Springer, Heidelberg (1997)

    Google Scholar 

  5. Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. In: Miyano, S., Takagi, T. (eds.) Genome Informatics, pp. 25–34. Univ. Academy Press (1997)

    Google Scholar 

  6. Bergeron, A., Chauve, C., Hartman, T., St-Onge, K.: On the Properties of Sequences of Reversals that Sort a Signed Permutation. Journal Ouvertes Biologie, Informatique, Mathematiques (JOBIM 2002), 99–108 (2002)

    Google Scholar 

  7. Bourque, G., Pevzner, P.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Research 12, 26–36 (2002)

    Google Scholar 

  8. Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: Proc. 3rd Int’l Conf. on Comput. Mol. Biol. RECOMB99, pp. 84–93. ACM Press, New York (1999)

    Chapter  Google Scholar 

  9. Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions. SIAM J. Discrete Math. 12(1), 91–110 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caprara, A.: On the practical solution of the reversal median problem. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 238–251. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Downie, S., Palmer, J.: Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis, P., et al. (eds.) Plant Molecular Systematics, pp. 14–35 (1992)

    Google Scholar 

  12. Eriksen, N.: Reversal and Transposition Medians. Theoretical Computer Sicence 374, 111–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In: Proc. 27th Ann. Symp. Theory of Computing STOC’95, pp. 178–189. ACM Press, New York (1995)

    Google Scholar 

  14. Hannenhalli, S., Pevzner, P.A.: To cut... or not to cut (applications of comparative physical maps in molecular evolution). In: Proc. 7th ACM-SIAM Symp. on Discrete Algorithms (SODA’96), pp. 304–313. SIAM Press (1996)

    Google Scholar 

  15. Larget, B., Simon, D.L., Kadane, J.B., Sweet, D.: A Bayesian analysis of metazoan mitochondrial genome arrangements. Mol. Biol. and Evol. 22(3), 486–495 (2005)

    Article  Google Scholar 

  16. Moret, B.M.E., Siepel, A., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Moret, B.M.E., Wyman, S., Bader, D.A., Warnow, T., Yan, M.: A new implementation and detailed study of breakpoint analysis. In: Proc. 6th Pacific Symp. on Biocomputing (PSB 01), pp. 583–594. World Scientific Pub, Singapore (2001)

    Google Scholar 

  18. Moret, B.M.E., Tang, J., Warnow, T.: Reconstructing phylogenies from gene-content and gene-order data. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny, pp. 321–352. Oxford Univ. Press, Oxford, UK (2005)

    Google Scholar 

  19. Palmer, J.: Chloroplast and mitochondria genome evolution in land plants. In: Herrmann, R. (ed.) Cell Organelles, pp. 99–133 (1992)

    Google Scholar 

  20. Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Elec. Colloq. on Comput. Complexity 71 (1998)

    Google Scholar 

  21. Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc. of Natl. Acad. of Sci. USA 100, 7672–7677 (2003)

    Article  Google Scholar 

  22. Raubeson, L., Jansen, R.: Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255, 1697–1699 (1992)

    Article  Google Scholar 

  23. Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    Google Scholar 

  24. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5, 555–570 (1998)

    Article  Google Scholar 

  25. Siepel, A., Moret, B.M.E.: Finding an optimal inversion median: experimental results. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 189–203. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  26. Siepel, A.: An algorithm to enumerate sorting reversals for signed permutations. J. Comput. Biol. 10, 575–597 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Glenn Tesler Dannie Durand

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arndt, W., Tang, J. (2007). Improving Inversion Median Computation Using Commuting Reversals and Cycle Information. In: Tesler, G., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2007. Lecture Notes in Computer Science(), vol 4751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74960-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74960-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74959-2

  • Online ISBN: 978-3-540-74960-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics