Skip to main content

Colchicine – an Overview for Plant Biotechnologists

  • Chapter
Bioactive Molecules and Medicinal Plants

Abstract

Secondary metabolites contribute to plant fitness by interacting with the ecosystems, and thus play a major role in the survival of the plant in its environment. Besides the importance for the plant itself, several secondary metabolites are commercially available as fine chemicals, such as drugs, dyes, flavors, fragrances, and insecticides. Due to their extensive biological activities, plant secondary metabolites have been used for centuries in traditional medicine. Alkaloids are an important group of secondary metabolites, of which colchicine is a useful agent in the treatment of acute attacks of gout. Apart from inhibiting the assembly of microtubules, the major biological effects of colchicine include leukocyte diapedesis, lysosomal degranulation, and inhibition of proliferation of fibroblasts as well as collagen transport to the extracellular space. In this way it relieves the pain associated with acute gout, decreases interleukin-l production in patients with primary biliary cirrhosis, and is used in the prevention or treatment of amyloidosis, scleroderma, and chronic cutaneous leukocytoclastic vasculitis. Colchicine prevents recurrences of acute pericarditis in adults and children. Colchicine is sold under different brand/trade names in different countries as a medicine for gout. The increased demand for colchicine has stimulated great interest in known plant sources of colchicine, new sources, and the route by which the alkaloid could be synthesized. Colchicine and related compounds have been found in several genera such as Colchicum, Merendera, Androcymbium, Gloriosa, and Littonia. Plant secondary products are vulnerable to fluctuations in value, depending on the effects of climate, pests, and diseases on the producing crops, or political changes in the producing countries. This has raised interest in developing biotechnological processes for the industrial production of such fine chemicals. However, very few reports are available on biotechnological approaches toward the biological production of such an important alkaloid. The evolving commercial importance of colchicine in recent years is sure to pave ways to extensive study by plant biotechnologists leading to exciting opportunities to engineer colchicine metabolism in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pichersky E, Gang D R (2000) Trends Plant Sci 5:439–445

    CAS  Google Scholar 

  2. De Luca V, St-Pierre B (2000) Trends Plant Sci 5:168–173

    Google Scholar 

  3. Kossel A (1891) Arch Physiol 181–186

    Google Scholar 

  4. Czapek F (1921) Spezielle Biochemie, Biochemie der Pflanzen, vol. 3, G. Fischer, Jena, p 369

    Google Scholar 

  5. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Plant Sci 161:839–851

    CAS  Google Scholar 

  6. Harborne JB (ed) (1978) Biochemical Aspects of Plant and Animal Coevolution: Proceedings of the Phytochemical Society of Europe, Vol 15. Academic Press, London

    Google Scholar 

  7. Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Plant Cell 5:171–179

    CAS  Google Scholar 

  8. Torssell KBG (1997) Chemical ecology. In: Torssell KBG (e.d) Natural Product Chemistry, A Mechanistic Biosynthetic and Ecological Approach. Swedish Pharmaceutical Press, Stockholm, pp 42–79

    Google Scholar 

  9. Harborne JB (1999) Classes and functions of secondary products. In: Walton NJ, Brown DE (eds) Chemicals from Plant, Perspectives on Secondary Plant Products. Imperial College Press, London, pp 1–25

    Google Scholar 

  10. Verpoorte R, van der Heijden R, Memelink J (2000) Transgenic Res 9:323–343

    CAS  Google Scholar 

  11. Verpoorte R (2000) J Pharm Pharmacol 52:253–262

    CAS  Google Scholar 

  12. Verpoorte R, van der Heijden R and Memelink J (1998) Plant biotechnology and the production of alkaloids. Prospects of metabolic engineering. In: GA Cordell (ed) The Alkaloids, Vol. 50. Academic Press, San Diego, pp 453–508

    Google Scholar 

  13. Verpoorte R, van der Heijden R, ten hoopen HJG, Memelink J (1999) Biotech Lett 21:467–479

    CAS  Google Scholar 

  14. Facchini PJ (2001) Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    CAS  Google Scholar 

  15. Wink M (1999) Plant secondary metabolites: biochemistry, function and biotechnology. In: Wink M (ed) Biochemistry of Plant Secondary Metabolism (Annual Plant Reviews), Vol. 2. Sheffield Academic Press, Sheffield, pp 1–16

    Google Scholar 

  16. Rueffer M, Zenk MH (1998) FEBS Lett 438:111–113

    CAS  Google Scholar 

  17. Budavari S (ed) (1989) The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals. Merck, Rahway, NJ, pp 386–387

    Google Scholar 

  18. Reynolds JEF (ed) (1993) Martindale, the Extra Pharmacopoeia, 30th edn. The Pharmaceutical Pres, London, pp 335–337

    Google Scholar 

  19. Chapman OL, Smith HG (1961) J Am Chem Soc 83:3914–3916

    CAS  Google Scholar 

  20. Chapman OL, Smith HG, King RW (1963) J Am Chem Soc 85:803–812

    CAS  Google Scholar 

  21. Loudon JD, Speakman JC (1950) Research 3:583–584

    CAS  Google Scholar 

  22. Murray SS, Kramlinger KG, McMichan JC (1983) Mayo Clin Proc 58:528–532

    CAS  Google Scholar 

  23. Stern N, Kupferschmidt H, Meier-Abt PJ (1997) Schweiz Rundsch Med Prax 86:952–956

    CAS  Google Scholar 

  24. Davies HO, Hyland RH, Morgan CD (1988) Can Med Assoc J 138:335–336

    CAS  Google Scholar 

  25. Caplan YH, Orloff KG, Thompson BC (1980) J Anal Toxicol 4:153–155

    CAS  Google Scholar 

  26. Jäger AK, Schottländer B, Smitt UW, Nyman U (1993) Plant Cell Rep 12:517–520

    Google Scholar 

  27. Stapczynski JS, Rothstin RJ, Gaye WA (1981) Ann Emerg Med 10:364

    CAS  Google Scholar 

  28. Watt JM, Breyer-Brandwijk MG (1962) The Medicinal and Poisonous Plants of Southern and Eastern Africa. Edinburgh and Livingstone, London

    Google Scholar 

  29. Medical Economics (1995) Physician’s Desk Reference. Medical Economics Data Production, Montvale, NJ

    Google Scholar 

  30. Darwin C (1875) Insectivorous Plants. John Murray, London

    Google Scholar 

  31. Eigsti OJ, Dustin P Jr (1955) Colchicine in Agriculture, Medicine, Biology and Chemistry. Iowa State College Press, Ames, Iowa

    Google Scholar 

  32. Pernice B (1889) Silicia Med 265–279

    Google Scholar 

  33. Cook J, Loudon J (1951) Colchicine. In: Holmes and Mankse (ed) Alkaloids. Academic Press, New York, pp 261–325

    Google Scholar 

  34. Ludford RJ (1936) Arch Exp Zelforsch Mikr Anat 18:411–441

    CAS  Google Scholar 

  35. Famaey JP (1988) Clin Exp Rheumatol 6:305–317

    CAS  Google Scholar 

  36. Insel PA (1996) Analgesic-antipyretic and anti inflammatory agents and drugs employed in the treatment of gout: colchicine. In: Goodman LS, Limbird LE, Milinoff PB, Ruddon RW, Goodman Gilman A (eds) Goodman and Gilman’s: The Pharmacological Basis of Therapeutics, 9th edn. Mc Graw-Hill, pp 614–658

    Google Scholar 

  37. Schiffmann E (1982) Annu Rev Physiol 44:553–568

    CAS  Google Scholar 

  38. Greenberg MS (2000) Drugs used for connective-tissue disorders and oral mucosal diseases. In: Ciancio SG (ed) ADA Guide to Dental Therapeutics. ADA Publishing, Chicago, pp 438–453

    Google Scholar 

  39. Kovacs P, Csaba G (2006) Cell Biochem Funct 24:419–429

    CAS  Google Scholar 

  40. Sullivan TP, King LE, Boyd AS (1998) J Am Acad Dermatol 39:993–999

    CAS  Google Scholar 

  41. Yu YS, Youn DH (1987) Korean J Ophthalmol 1:59–71

    CAS  Google Scholar 

  42. Chang DM, Baptiste P, Schur PH (1990) J Rheumatol 17:1148–1157

    CAS  Google Scholar 

  43. O’Brien JM Jr, Wewers MD, Moore SA, Allen JN (1995) J Immunol 154:4113–4122

    Google Scholar 

  44. Zemer D, Livneh A, Langevitz P (1992) Ann Intern Med 116:426

    CAS  Google Scholar 

  45. Rosenbaum M, Rosner I (1995) Clin Exp Rheumatol 13:126

    Google Scholar 

  46. Callen JP (1985) J Am Acad Dermatol 13:193–200

    CAS  Google Scholar 

  47. Rodriguez de la Serna A, Guindo Soldevila J, Marti Claramunt V, Bayes de Luna A (1987) Lancet 26:1517

    Google Scholar 

  48. Spodick DH (1991) Circulation 83:1830–1831

    CAS  Google Scholar 

  49. Millaire A, de Groote P, Decoulx E, Goullard L, Ducloux G (1994) Eur Heart J 15:120–124

    CAS  Google Scholar 

  50. Brucato A, Cimaz R, Balla E (2000) Pediatr Cardiol 21:395–396

    CAS  Google Scholar 

  51. Voet D, Voet JG (1990) Biochemistry. John Wiley and Sons, New York, pp 758–762

    Google Scholar 

  52. Katzung BG (ed) (1995) Basic and Clinical Pharmacology. Apleton and Lange, Norwalk, pp 536–559

    Google Scholar 

  53. Laster L, Seegmiller TE, Stetten D, Liddle LV (1957) J Clin Invest 36:908

    Google Scholar 

  54. Seegmiller JE, Howell RR, Malawista SE (1962) J Clin Invest 41:1399

    Google Scholar 

  55. Singer CJ (1996) A Short History of Scientific Ideas. Barnes and Noble Books, New York

    Google Scholar 

  56. Buskila D, Zaks N, Neumann L, Livneh A, Greenberg S, Pras M, Langevitz P (1997) Clin Exp Rheumatol 15:355–360

    CAS  Google Scholar 

  57. Gökel Y, Canataro˘glu A, Satar S, Köseo˘glu Z (2000) Turk J Med Sci 30:401–403

    Google Scholar 

  58. Levy M, Spino M, Read S (1991) Pharmacotherapy 11:196–211

    CAS  Google Scholar 

  59. Guttadauria M, Diamond H, Kaplan D (1977) J Rheumatol 4:272–276

    CAS  Google Scholar 

  60. Wallace SL (1980) Colchicine. In: Kelley WN, Harris ED, Ruddy S, Sledge CB (eds) Textbook of Rheumatology. Saunders, Philadelphia, pp 878–884

    Google Scholar 

  61. Folpini A, Furfori P (1995) J Toxicol Clin Toxicol 33:71–77

    CAS  Google Scholar 

  62. Ruah CB, Stram JR, Chasin WD (1988) Arch Otolaryngol Head Neck Surg 114:671–675

    CAS  Google Scholar 

  63. Katz J, Langevitz P, Shemer J (1994) J Am Acad Dermatol 31:459–461

    CAS  Google Scholar 

  64. Andreu JM, Perez-Ramirez B, Gorbunoff MJ, Ayala D, Timasheff SN (1998) Biochemistry 37:8356 – 8368

    CAS  Google Scholar 

  65. Berg U, Bladh H, Mpampos K (2004) Org Biomol Chem 2:2125–2130

    CAS  Google Scholar 

  66. Barnabás B, Pfahler PL, Kovács G (1991) Theor Appl Genet 81:675–678

    Google Scholar 

  67. Mathias R, Röbbelen G (1991) Plant Breed 106:82–84

    CAS  Google Scholar 

  68. Alemanno L, Guiderdoni E (1994) Plant Cell Rep 13:432–436

    CAS  Google Scholar 

  69. Barcelo P, Cabrera A, Hagle C, Lörz H (1994) Theor Appl Genet 87:741–745

    Google Scholar 

  70. Saisingtong S, Schmid JE, Stamp P, Büter B (1996) Theor Appl Genet 92:1017–1023

    CAS  Google Scholar 

  71. Fühner H, Rehbein M (1915) Arch Exp Path Pharmak 79:1–18

    Google Scholar 

  72. Rossbach MJ (1876) Arch Ges Physiol 12:308–325

    Google Scholar 

  73. Carr GD, King RM, Powell AM, Robinson H (1999) Am J Bot 86:1003–1013

    CAS  Google Scholar 

  74. Hill RN, Spragg RG, Wedel MK, Moser KM (1975) Ann Intern Med 83:523–524

    CAS  Google Scholar 

  75. Hobson CH, Rankin AP (1986) Anaesth Intens Care 14:453–455

    CAS  Google Scholar 

  76. Kontos HA (1962) N Engl J Med 266:238

    Google Scholar 

  77. Mouren P, Tatossian A, Poiso Y, Giudicelli S, Jouglard J, Dufour H, Poyen D (1969) Presse Med 77:14:505–508

    CAS  Google Scholar 

  78. Favarel-Garrigues JC, Bony D, Poisot D (1975) Concours Med 97:5183–5197

    Google Scholar 

  79. Bismuth C, Gaultier M, Conso F (1977) Nouv Presse Med 6:1625–1629

    CAS  Google Scholar 

  80. Kuncl RW (1987) N Engl J Med 316:1562–1568

    CAS  Google Scholar 

  81. Boruchow IB (1966) Cancer 19:541–543

    CAS  Google Scholar 

  82. Heaney D, Derghazarian CB, Pineo GF (1976) Am J Med Sci 271:233–238

    CAS  Google Scholar 

  83. Rangam CM, Bhagwat RR (1960) Indian J Med Res 48:549–557

    CAS  Google Scholar 

  84. Wang D, Greenbaum AL, Harkness RD (1963) Biochem J 86:62–64

    CAS  Google Scholar 

  85. Ben-Chetrit E, Levy M (1998) Semin Arthritis Rheum 28:48–59

    CAS  Google Scholar 

  86. The Drug Monitor (2007) Ed:Nasir Anaizi, http://www.thedrugmonitor.com/colchicines

    Google Scholar 

  87. Webb DI (1968) N Engl J Med 279:845–850

    CAS  Google Scholar 

  88. Pelletier PS, Caventou J (1820) J Ann Chim Phy 14:69–83

    Google Scholar 

  89. Zeisel S (1888) Monatsch Chem 9:1–30

    Google Scholar 

  90. Houde A (1884) C R Acad Sci Paris 98:1442

    Google Scholar 

  91. Séris L (1947) La Rev Sci Fas 88:489–493

    Google Scholar 

  92. Corrodi H, Hardegger E (1955) Helv Chem Acta 38:2030–2033

    CAS  Google Scholar 

  93. Oberlin ML (1857) Ann Chim Phys 50:108–114

    Google Scholar 

  94. Windaus A (1924) Ann Chem 439:59–75

    CAS  Google Scholar 

  95. Cohen A, Cook JW, Roe EMF (1940) J Chem Soc 1940:194–197

    Google Scholar 

  96. Tarbell DS, Frank HR, Fanta PE (1946) J Am Chem Soc 68:502–506

    CAS  Google Scholar 

  97. Rapport H, Williams AR, Cisney M (1951) J Am Chem Soc 73:1414–1421

    Google Scholar 

  98. Cook JW, Jacj J, Loudon JD, Buchanan GL, MacMillan J (1951) J Chem Soc 1951:1397–1403

    Google Scholar 

  99. Koo J (1953) J Am Chem Soc 75:720–723

    CAS  Google Scholar 

  100. Dewar MJS (1945) Nature 155:50–51, 141–142, 479

    Google Scholar 

  101. Doering W von E, Knox LH (1951) J Am Chem Soc 73:828–838

    Google Scholar 

  102. Rapport H, Williams AR (1951) J Am Chem Soc 76:1896–1897

    Google Scholar 

  103. Rapport H, Williams AR, Campion JE, Pack D (1954) J Am Chem Soc 76:3693–3698

    Google Scholar 

  104. Walasek EJ, Kelesey FE, Geiling EMK (1952) Science 116:225–227

    Google Scholar 

  105. Battersby AR, Reynolds JJ (1960) Proc Chem Soc 1960:346–347

    Google Scholar 

  106. Leete E, Nemeth PE (1961) J Am Chem Soc 83:2192–2194

    CAS  Google Scholar 

  107. Battersby AR (1965) Angew Chem 4:79–80

    Google Scholar 

  108. Battersby AR, Binks R, Yeowell DA (1964) Proc Chem Soc 1964:86

    Google Scholar 

  109. Battersby AR, Binks R, Reynolds JJ, Yeowell DA (1964) J Chem Soc 1964:4257–4268

    Google Scholar 

  110. Battersby AR, Herbert RB (1964) Proc Chem Soc 1964:260

    Google Scholar 

  111. Leete E (1963) J Am Chem Soc 85:3666–3669

    CAS  Google Scholar 

  112. Leete E, Nemeth PE (1960) J Am Chem Soc 82:6055–6057

    CAS  Google Scholar 

  113. Hill RD, Unrau AM (1965) Can J Chem 43:709–711

    CAS  Google Scholar 

  114. Leete E (1965) Tetrahedron Lett 1965:333–336

    CAS  Google Scholar 

  115. Kuhn R (1993) Molekulare Asymmetrie. In: Fredenberg K (ed) Stereochemie. Franz Deutike, Leipzig-Wien pp 803

    Google Scholar 

  116. Eliel EL, Wilen SH (1994) Stereochemistry of Organic Compounds. John Wiley and Sons, New York, pp 1119–1122

    Google Scholar 

  117. Wildman WC (1959) Colchicine and related compounds. In: Manske RHF (ed) The Alkaloids VI. Academic Press, New York, pp 247

    Google Scholar 

  118. Šantavý F (1956) Oesterr Botan Z 103:300–311

    Google Scholar 

  119. Šantavý F, Zajíček DV, Něměcková A (1957) Collection Czech Chem Commun 22:1482–1488

    Google Scholar 

  120. Šantavý F, Coufalík E (1951) Collect Czech Chem C 16:198–203

    Google Scholar 

  121. Linsmaier EM, Skoog F (1965) Physiol Plant 18:100

    CAS  Google Scholar 

  122. Hunault G (1979) Rev Cytol Biol Végét-Bot 2:103

    CAS  Google Scholar 

  123. Hayashi T, Yoshida K, Sano K (1988) Phytochem 27:1371–1374

    CAS  Google Scholar 

  124. Murashige T, Skoog F (1962) Physiol Plant 15:473–497

    CAS  Google Scholar 

  125. Yoshida K, Hayashi T, Sano K (1988) Phytochem 27:1375–1378

    CAS  Google Scholar 

  126. Finnie JF, Van Staden J (1989) Plant Cell Tissue Organ Cult 19:151–158

    Google Scholar 

  127. Finnie JF, Van Staden J (1994) Gloriosa superba L (Flame Lily): microproapgation and in vitro production of colchicine. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol. 26 Medicinal and Aromatic Plants VI. Springer–-Verlag, Berlin, Heidelberg, New York, pp 146–166

    Google Scholar 

  128. Ghosh B, Mukherjee M, Jha TB, Jha S (2002) Biotechnol Lett 24:231–234

    CAS  Google Scholar 

  129. Ghosh S, Ghosh B, Jha S (2006) Biotechnol Lett 28:497–503

    CAS  Google Scholar 

  130. Sivakumar G, Krishnamurthy KV, Hahn EJ, Paek KY (2004) J Hort Sci Biot 79:602–605

    CAS  Google Scholar 

  131. Perrot E (1936) Compt Rend 202:1088–1089; Chem Abstr 30:3946

    Google Scholar 

  132. Hrbek J, Šantavý F (1962) Collect Czech Chem C 27:255–267

    CAS  Google Scholar 

  133. Moza BK, Potešilová H, Šantavý F (1962) Planta Med 10:152–159

    CAS  Google Scholar 

  134. Šantavý F (1957) Collect Czech Chem C 22:652–653

    Google Scholar 

  135. Bellet P (1952) Ann Pharm Franç 10:81–88

    CAS  Google Scholar 

  136. Hamidi A, Fahmy MA (1960) J Chem UAR 3:279

    CAS  Google Scholar 

  137. Weizmann A (1952) Bull Res Council Israel Sect D 2:21–26

    CAS  Google Scholar 

  138. Yusupov MK, Sadykov AS (1964) Zh Obsch Khim 34:1672–1676

    CAS  Google Scholar 

  139. Salo VM (1963) Aptech Delo 12:40–43

    CAS  Google Scholar 

  140. Podoselov BD (1963) Glasnik Hem Drustva Beograd 28:461–463

    Google Scholar 

  141. Kaul JL, Moza BK, Šantavý F, Vrublovský (1964) Collect Czech Chem C 29:1689–1701

    CAS  Google Scholar 

  142. Fell KR, Ramsden D (1966) J Pharm Pharmacol 18:126S–132S

    Google Scholar 

  143. Beer AA, Karapetyan SA, Kolesnikov AI, Snegirev DP (1949) Dokl Akad Nauk SSSR 67:883–884

    CAS  Google Scholar 

  144. Salo VM (1961) Aptech Delo 10:28–32

    CAS  Google Scholar 

  145. Bryan JT, Lauter WM (1951) J Am Pharm Assoc 40:253

    CAS  Google Scholar 

  146. Lang B, Maturova M, Reichstein T, Šantavý F (1959) Planta Med 7:298–309

    Google Scholar 

  147. Burden E, Grindley DN, Prowse GA (1955) J Pharm Pharmacol 7:1063–1071

    CAS  Google Scholar 

  148. Mehra PN, Khoshoo TN (1951) J Pharm Pharmacol 3:486–496

    CAS  Google Scholar 

  149. Sadykov AS, Yusupov MK (1960) Dokl Akad Nauk Uz SSSR 1960:34–36

    Google Scholar 

  150. Sadykov AS, Yusupov MK (1962) Sci Rep Tashkent Univ 203:15–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ghosh, S., Jha, S. (2008). Colchicine – an Overview for Plant Biotechnologists. In: Ramawat, K., Merillon, J. (eds) Bioactive Molecules and Medicinal Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74603-4_11

Download citation

Publish with us

Policies and ethics