Abstract
The early days of finite model theory saw a variety of results establishing that the model theory of the class of finite structures is not well-behaved. Recent work has shown that considering subclasses of the class of finite structures allows us to recover some good model-theoretic behaviour. This appears to be especially true of some classes that are known to be algorithmically well-behaved. We review some results in this area and explore the connection between logic and algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)
Ajtai, M., Gurevich, Y.: Datalog vs first-order logic. J. of Computer and System Sciences 49, 562–588 (1994)
Atserias, A., Dawar, A., Grohe, M.: Preservation under extensions on well-behaved finite structures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1437–1449. Springer, Heidelberg (2005)
Atserias, A., Dawar, A., Kolaitis, P.G.: On preservation under homomorphisms and unions of conjunctive queries. Journal of the ACM 53, 208–237 (2006)
Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proc. of the 15th ACM Symp. on the Theory of Computing, pp. 171–183. ACM Press, New York (1983)
Benedikt, M., Segoufin, L.: Towards a characterization of order-invariant queries over tame structures. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 276–291. Springer, Heidelberg (2005)
Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)
Cai, J-Y., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identification. Combinatorica 12(4), 389–410 (1992)
Courcelle, B.: The monadic second-order logic of graphs ii: Infinite graphs of bounded width. Theory of Computing Systems 21, 187–221 (1989)
Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwan, J. (ed.) Handbook of Theoretical Computer Science, Formal Models and Sematics (B), vol. B, pp. 193–242. Elsevier, Amsterdam (1990)
Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Proc. 22nd IEEE Symp. on Logic in Computer Science (2007)
Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Model theory makes formulas large. In: ICALP 2007: Proc. 34th International Colloquium on Automata, Languages and Programming. LNCS, Springer, Heidelberg (2007)
Dawar, A., Kreutzer, S., Grohe, M., Schweikardt, N.: Approximation schemes for first-order definable optimisation problems. In: Proc. 21st IEEE Symp. on Logic in Computer Science, pp. 411–420 (2006)
Dawar, A., Malod, G.: forthcoming
Dawar, A., Richerby, D.: The power of counting logics on restricted classes of finite structures. In: CSL 2007: Computer Science Logic. LNCS, Springer, Heidelberg (2007)
Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)
Ebbinghaus, H-D., Flum, J.: Finite Model Theory. 2nd edn., Springer, Heidelberg (1999)
Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–291 (2000)
Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R.M. (ed.) Complexity of Computation, SIAM-AMS Proceedings, vol. 7, pp. 43–73 (1974)
Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking. SIAM Journal on Computing 31, 113–145 (2001)
Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. Journal of the ACM 48, 1184–1206 (2001)
Gaifman, H.: On local and non-local properties. In: Stern, J. (ed.) Proceedings of the Herbrand Symposium Logic Colloquium 1981, pp. 105–135. North-Holland, Amsterdam (1982)
Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema, Y., Weinstein, S.: Finite Model Theory and Its Applications. Springer, Heidelberg (2007)
Grohe, M.: Fixed-point logics on planar graphs. In: Proc. 13th IEEE Annual Symp. Logic in Computer Science, pp. 6–15 (1998)
Grohe, M.: Isomorphism testing for embeddable graphs through definability. In: Proc. 32nd ACM Symp. Theory of Computing, pp. 63–72 (2000)
Grohe, M., Mariño, J.: Definability and descriptive complexity on databases of bounded tree-width. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, Springer, Heidelberg (1998)
Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
Immerman, N.: Relational queries computable in polynomial time. Information and Control 68, 86–104 (1986)
Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)
Immerman, N., Lander, E.S.: Describing graphs: A first-order approach to graph canonization. In: Selman, A. (ed.) Complexity Theory Retrospective, Springer, Heidelberg (1990)
Kolatis, P.G.: A tutorial on finite model theory. In: Proceedings of the Eighth Annual IEEE Symp. on Logic in Computer Science, LICS 1993, pp. 122–122 (1993)
Kreidler, M., Seese, D.: Monadic NP and graph minors. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.) Computer Science Logic. LNCS, vol. 1584, pp. 126–141. Springer, Heidelberg (1999)
Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
Lindell, S.: An analysis of fixed-point queries on binary trees. Theoretical Computer Science 85(1), 75–95 (1991)
Livchak, A.: The relational model for process control. Automated Documentation and Mathematical Linguistics 4, 27–29 (1983)
Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of Computer and System Sciences 25, 42–65 (1982)
Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press (2001)
Rossman, B.: Existential positive types and preservation under homomorphisisms. In: 20th IEEE Symposium on Logic in Computer Science, pp. 467–476 (2005)
Seese, D.: Linear time computable problems and first-order descriptions. Math. Struct. in Comp. Science 6, 505–526 (1996)
Nešetřil, J., de Mendez, P.O.: The grad of a graph and classes with bounded expansion. International Colloquium on Graph Theory, 101–106 (2005)
Tait, W.W.: A counterexample to a conjecture of Scott and Suppes. Journal of Symbolic Logic 24, 15–16 (1959)
Vardi, M.Y.: The complexity of relational query languages. In: Proc. of the 14th ACM Symp. on the Theory of Computing, pp. 137–146 (1982)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dawar, A. (2007). Finite Model Theory on Tame Classes of Structures. In: Kučera, L., Kučera, A. (eds) Mathematical Foundations of Computer Science 2007. MFCS 2007. Lecture Notes in Computer Science, vol 4708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74456-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-74456-6_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74455-9
Online ISBN: 978-3-540-74456-6
eBook Packages: Computer ScienceComputer Science (R0)