Abstract
The current research in granular computing is dominated by set-theoretic models such as rough sets and fuzzy sets. By recasting the existing studies in a wider context, we propose a unified framework of granular computing. The new framework extends results obtained in the set-theoretic setting and extracts high-level common principles from a wide range of scientific disciplines. The art of granular computing for problem solving emerges from the resulting common philosophy, methodology and information processing paradigm. Granular computing stresses not only the need for rigor, structure, conciseness and clarity, but also the importance of conscious effects and wisdom in using powerful strategies and heuristics in stating and solving problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahl, V., Allen, T.F.H.: Hierarchy Theory, A Vision, Vocabulary and Epistemology. Columbia University Press, New York (1996)
Anderberg, M.R.: Cluster Analysis for Applications. Academic Press, New York (1973)
Arrow, H., McGrath, J.E., Berdahl, J.L.: Small Groups as Complex Systems: Formation, Coordination, Development, and Applications. Sage Publications, Thousand Oaks, California (2000)
Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Boston (2002)
Bargiela, A., Pedrycz, W.: The roots of granular computing. In: Proceedings of 2006 IEEE International Conference on Granular Computing, pp. 806–809. IEEE Computer Society Press, Los Alamitos (2006)
Bateson, G.: Mind and Nature: A Necessary Unity, E.P. Dutton, New York (1979)
Beveridge, W.I.B.: The Art of Scientific Investigation, Vintage Books, New York (1967)
Burns, T.R., Gomolińska, A.: The theory of socially embedded games: the mathematics of social relationships, rule complexes, and action modalities. Quality and Quantity 34, 379–406 (2000)
Capra, F.: The Web of Life, Anchor Books, New York (1997)
Chen, Y.H., Yao, Y.Y.: Multiview intelligent data analysis based on granular computing. In: Proceedings of 2006 IEEE International Conference on Granular Computing, pp. 281–286. IEEE Computer Society Press, Los Alamitos (2006)
Conway, C.M., Christiansen, M.H.: Sequential learning in non-human primates. Trends in Cognitive Sciences 12, 539–546 (2001)
Dahl, O.-J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic Press, New York (1972)
Doignon, J.P., Falmagne, J.C.: Knowledge Spaces. Springer, Berlin (1999)
Flower, L.: Problem-Solving Strategies for Writing, Harcourt Brace Jovabovich, Inc. New York (1981)
Friske, M.: Teaching proofs: a lesson from software engineering. American Mathematical Monthly 92, 142–144 (1995)
Giunchglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 56, 323–390 (1992)
Gomolińska, A.: Fundamental mathematical notions of the theory of socially embedded games: a granular computing perspective. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 411–434. Springer, Berlin (2004)
Gordon, W.J.J.: Synectics: The Development of Creative Capacity, Harper and Row, New York (1961)
Grzymala-Busse, J.W., Rzasa, W.: Local and global approximations for incomplete data. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 244–263. Springer, Heidelberg (2006)
Hawkins, J., Blakeslee, S.: On Intelligence, Henry Holt and Company, New York (2004)
Hobbs, J.R.: Granularity. In: Proceedings of the Ninth International Joint Conference on Artificial Intelligence, pp. 432–435 (1985)
Horn, R.E.: Structured writing as a paradigm. In: Romiszowski, A., Dills, C. (eds.) Instructional Development: State of the Art, Educational Technology Publications, Englewood Cliffs (1998)
Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.): Rough Set Theory and Granular Computing. Springer, Berlin (2003)
Jeffries, V., Ransford, H.E.: Social Stratification: A Multiple Hierarchy Approach, Allyn and Bacon, Boston (1980)
Kernighan, B.W., Plauger, P.J.: The Elements of Programming Style. McGraw-Hill, New York (1978)
Klahr, D., Kotovsky, K. (eds.): Complex Information Processing: The Impact of Herbert A. Simon. Lawrence Erlbaum Associates, Hillsdale (1989)
Knoblock, C.A.: Generating Abstraction Hierarchies: An Automated Approach to Reducing Search in Planning. Kluwer Academic Publishers, Boston (1993)
Knuth, D.E.: The Art of Computer Programming, 3rd edn. Addison-Wesley, Reading (1997)
Laszlo, E.: The Systems View of the World: The Natural Philosophy of the New Developments in the Science, George Brasiller, New York (1972)
Ledgard, H.F., Gueras, J.F., Nagin, P.A.: PASCAL with Style: Programming Proverbs, Hayden Book Company, Rechelle Park, New Jersey (1979)
Lee, T.T.: An information-theoretic analysis of relational databases – part I: data dependencies and information metric. IEEE Transactions on Software Engineering SE-13, 1049–1061 (1987)
Leron, U.: Structuring mathematical proofs. American Mathematical Monthly 90, 174–185 (1983)
Lin, T.Y.: Granular Computing on binary relations I: data mining and neighborhood systems, II: rough set representations and belief functions. In: Skowron, A., Polkowski, L. (eds.) Rough Sets In Knowledge Discovery, pp. 107–140. Physica-Verlag (1998)
Lin, T.Y.: Granular computing: structures, represenations, and applications. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 16–24. Springer, Heidelberg (2003)
Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.): Data Mining, Rough Sets and Granular Computing. Physica-Verlag, Heidelberg (2002)
Liu, Q., Wang, Q.Y.: Granular logic with closeness relation “~ λ ” and its reasoning. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 709–717. Springer, Heidelberg (2005)
Losee, J.: A Historical Introduction to the Philosphy of Science, 3rd edn. Oxford University Press, Oxford (1993)
Marr, D.: Vision, A Computational Investigation into Human Representation and Processing of Visual Information, W.H. Freeman and Company, San Francisco (1982)
Martella, R.C., Nelson, R., Marchard-Martella, N.E.: Research Methods: Learning to Become a Critical Research Consumer, Allyn and Bacon, Boston (1999)
Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review 63, 81–97 (1956)
Minto, B.: The Pyramid Princile: Logic in Writing and Thinking. Prentice Hall/Financial Times, London (2002)
Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs (1972)
Nguyen, H.S., Skowron, A., Stepaniuk, J.: Granular computing: a rough set approach. Computational Intelligence 17, 514–544 (2001)
Pattee, H.H. (ed.): Hierarchy Theory, The Challenge of Complex Systems, George Braziller, New York (1973)
Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z.: Granularity, multi-valued logic, Bayes’ theorem and rough sets. In: Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.) Data Mining, Rough Sets and Granular Computing, pp. 487–498. Physica-Verlag, Heidelberg (2002)
Pawlak, Z., Skowron, A.: Rough sets: some extensions. Information Science 177, 28–40 (2007)
Pedrycz, W. (ed.): Granular Computing: An Emerging Paradigm. Physica-Verlag, Heidelberg (2001)
Peikoff, L.: Objectivism: The Philosophy of Ayn Rand, Dutton, New York (1991)
Poggio, T., Smale, S.: The mathematics of learning: dealing with data. Notices of the AMS 50, 537–544 (2003)
Polkowski, L.: A model of granular computing with applications: granules from rough inclusions in information systems. In: Proceedings of 2006 IEEE International Conference on Granular Computing, pp. 9–16. IEEE Computer Society Press, Los Alamitos (2006)
Polkowski, L., Skowron, A.: Towards adaptive calculus of granules. In: Proceedings of 1998 IEEE International Conference on Fuzzy Systems, pp. 111–116. IEEE Computer Society Press, Los Alamitos (1998)
Posner, M.I. (ed.): Foundations of Cognitive Science. MIT Press, Cambridge (1989)
Reif, F., Heller, J.: Knowledge structure and problem solving in physics. Educational Psychologist 17, 102–127 (1982)
Salthe, S.N.: Evolving Hierarchical Systems, Their Structure and Representation. Columbia University Press, New York (1985)
Simon, H.A.: The Sciences of the Artificial. The MIT Press, Massachusetts (1969)
Skowron, A., Synak, P.: Hierarchical information maps. In: Ślęzak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 622–631. Springer, Heidelberg (2005)
Solso, R.L., MacLin, M.K., MacLin, O.H.: Cognitive Psychology, 7th edn. Allyn and Bacon, New York (2005)
Strunk, W., White, E.B.: The Elements of Style, Allyn and Bacon, Needham Heights, MA (2000)
Whyte, L.L., Wilson, A.G., Wilson, D. (eds.): Hierarchical Structures. American Elsevier Publishing Company, Inc, New York (1969)
Wirth, N.: Program development by stepwise refinement. Communications of the ACM 14, 221–227 (1971)
Yao, J.T.: Information granulation and granular relationships. In: Proceedings of the IEEE Conference on Granular Computing, pp. 326–329. IEEE Computer Society Press, Los Alamitos (2005)
Yao, Y.Y.: Granular computing using neighborhood systems. In: Roy, R., Furuhashi, T., Chawdhry, P.K. (eds.) Advances in Soft Computing: Engineering Design and Manufacturing, pp. 539–553. Springer, London (1999)
Yao, Y.Y.: Granular computing: basic issues and possible solutions. In: Proceedings of the 5th Joint Conference on Information Sciences, pp. 186–189 (2000)
Yao, Y.Y.: Information granulation and rough set approximation. International Journal of Intelligent Systems 16, 87–104 (2001)
Yao, Y.Y.: A partition model of granular computing. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B, Świniarski, R.W., Szczuka, M. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 232–253. Springer, Heidelberg (2004)
Yao, Y.Y.: Granular computing. Computer Science (Ji Suan Ji Ke Xue) 31, 1–5 (2004)
Yao, Y.Y.: Perspectives of granular computing. In: Proceedings of 2005 IEEE International Conference on granular computing, vol. 1, pp. 85–90. IEEE Computer Society Press, Los Alamitos (2005)
Yao, Y.Y.: Three perspectives of granular computing. Journal of Nanchang Institute of Technology 25, 16–21 (2006)
Yao, Y.Y.: Granular computing for data mining. In: Proceedings of SPIE Conference on Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security, pp. 1-12 (paper no. 624105) (2006)
Young, R.E., Becker, A.L., Pike, K.L.: Rhetoric: Discovery and Change, Harcourt Brace Jovabovich, Inc. New York (1970)
Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 19, 111–127 (1997)
Zadeh, L.A.: Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Computing 2, 23–25 (1998)
Zhang, B., Zhang, L.: Theory and Applications of Problem Solving. North-Holland, Amsterdam (1992)
Zhang, L., Zhang, B.: The quotient space theory of problem solving. Fundamenta Informatcae 59, 287–298 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yao, Y. (2007). The Art of Granular Computing. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds) Rough Sets and Intelligent Systems Paradigms. RSEISP 2007. Lecture Notes in Computer Science(), vol 4585. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73451-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-73451-2_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73450-5
Online ISBN: 978-3-540-73451-2
eBook Packages: Computer ScienceComputer Science (R0)