Skip to main content

Die Another Day

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4475))

Abstract

The Hydra was a many-headed monster from Greek mythology that would immediately replace a head that was cut off by one or two new heads. It was the second task of Hercules to kill this monster. In an abstract sense, a Hydra can be modeled as a tree where the leaves are the heads, and when a head is cut off some subtrees get duplicated. Different Hydra species differ by which subtress can be duplicated in which multiplicity. Using some deep mathematics, it had been shown that two classes of Hydra species must always die, independent of the order in which heads are cut off. In this paper we identify three properties for a Hydra that are necessary and sufficient to make it immortal or force it to die. We also give a simple combinatorial proof for this classification. Now, if Hercules had known this...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avigad, J.: Ordinal analysis without proofs. In: Sieg, W., Sommer, R., Talcott, C. (eds.) Reflections on the Foundations of Mathematics: Essays in Honor of Solomon Feferman. Lecture Notes in Logic, vol. 15, pp. 1–36. A. K. Peters, Ltd, Wellesley, MA (2002)

    Google Scholar 

  2. Beklemishev, L.D.: The worm principle. Technical Report 219, Department of Philosophy, University of Utrecht, Logic Group Preprint Series (2003)

    Google Scholar 

  3. Buchholz, W.: An independence result for (Π 1 1− CA) + BI. Annals of Pure and Applied Logic 33, 131–155 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlucci, L.: A new proof-theoretic proof of the independence of the Kirby-Paris’ Hydra theorem. Theoretical Computer Science 300(1–3), 365–378 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cichon, E.A.: A short proof of two recently discovered independence results using recursion theoretic methods. Proceedings of the American Mathematical Society 87(4), 704–706 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clote, P., McAloon, K.: Two further combinatorial theorems equivalent to the 1-consistency of Peano arithmetic. The. Journal of Symbolic Logic 48(4), 1090–1104 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daly, B. (no title) (17 August, 2000), Archived in the Mathematical Atlas at: http://www.math.niu.edu/~rusin/known-math/00_incoming/goodstein

  8. Dershowitz, N.: Trees, ordinals and termination. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 243–250. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  9. Feferman, S., Friedman, H.M., Maddy, P., Steel, J.R.: Does mathematics need new axioms? The Bulletin of Symbolic Logic 6(4), 401–446 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gardner, M.: Mathematical games: Tasks you cannot help finishing no matter how hard you try to block finishing them. Scientific American, pp. 8–13 (1983)

    Google Scholar 

  11. Gentzen, G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112:493–565, 1936. Appendix: Galley proof of sections IV and V, Mathematische Annalen received on 11th August 1935. Translated as The consistency of elementary number theory in [25], pp. 132–213 (1935)

    Google Scholar 

  12. Goodstein, R.J.: On the restricted ordinal theorem. The Journal of Symbolic Logic 9, 33–41 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamano, M., Okada, M.: A relationship among Gentzen’s proof-reduction, Kirby-Paris’ Hydra game and Buchholz’s Hydra game. Mathematical Logic Quarterly 43, 103–120 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hamano, M., Okada, M.: A direct independence proof of Buchholz’s Hydra game on finite labeled trees. Archive for Mathematical Logic 37, 67–89 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ishihara, H.: Weak König’s Lemma implies Brouwer’s Fan Theorem. Notre Dame Journal of Formal Logic 47(2), 249–252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keisler, H.J.: Nonstandard arithmetic and reverse mathematics. The. Bulletin of Symbolic Logic 12(1), 100–125 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kirby, L., Paris, J.: Accessible independence results for Peano arithmetic. Bulletin of the London Mathematical Society 14, 285–293 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kirby, L., Paris, J.: Accessible independence results for Peano arithmetic. Bulletin of the London Mathematical Society 14, 285–293 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lagarias, J.: The 3x + 1 problem and its generalizations. American Mathematical Monthly 92, 3–23 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Leadbetter, R.: Hydra. In: Encyclopedia Mythica (1999), http://www.pantheon.org/articles/h/hydra.html

  21. Luccio, F., Pagli, L.: Death of a monster. ACM SIGACT News 31(4), 130–133 (2000)

    Article  Google Scholar 

  22. Paris, J.: Some independence results for Peano arithmetic. The. Journal of Symbolic Logic 43, 725–731 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. The Lernean Hydra. In: Crane, G., (ed.), The Perseus Project. Tufts University, Department of the Classics (2000), http://www.perseus.tufts.edu/Herakles/hydra.html

  24. Smullyan, R.M.: Trees and ball games. Annals of the New York Academy of Sciences 321, 86–90 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. North Holland, Amsterdam (1969)

    MATH  Google Scholar 

  26. Tait, W.W.: Gödels reformulation of Gentzen’s first consistency proof for arithmetic: the no-counterexample interpretation. The. Bulletin of Symbolic Logic 11(2), 225–238 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tucholsky, K.: Ratschläge für einen schlechten Redner (Advice for a bad speaker). In: Zwischen gestern und morgen, pp. 95–96. Rowohlt Verlag, Hamburg (1952), English translation at http://www.nobel133.physto.se/Programme/tucholsky.htm

  28. Wainer, S.S.: Accessible recursive functions. The. Bulletin of Symbolic Logic 5(3), 367–388 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Weiermann, A.: Classifying the phase transition of Hydra games and Goodstein sequences (2006) Manuscript, available at http://www.math.uu.nl/people/weierman/goodstein.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Fleischer, R. (2007). Die Another Day. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds) Fun with Algorithms. FUN 2007. Lecture Notes in Computer Science, vol 4475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72914-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72914-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72913-6

  • Online ISBN: 978-3-540-72914-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics