Skip to main content

Extending the Notion of AT-Model for Integer Homology Computation

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4538))

Abstract

When the ground ring is a field, the notion of algebraic topological model (AT-model) is a useful tool for computing (co)homology, representative (co)cycles of (co)homology generators and the cup product on cohomology of nD digital images as well as for controlling topological information when the image suffers local changes [6,7,9]. In this paper, we formalize the notion of λ-AT-model (λ being an integer) which extends the one of AT-model and allows the computation of homological information in the integer domain without computing the Smith Normal Form of the boundary matrices. We present an algorithm for computing such a model, obtaining Betti numbers, the prime numbers p involved in the invariant factors (corresponding to the torsion subgroup of the homology), the amount of invariant factors that are a power of p and a set of representative cycles of the generators of homology mod p, for such p.

Partially supported by Junta de Andalucía (FQM-296 and TIC-02268) and Spanish Ministry for Science and Education (MTM-2006-03722).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dahmen, W., Micchelli, C.A.: On the Linear Independence of Multivariate b-splines I. Triangulation of simploids. SIAM J. Numer. Anal. vol. 19 (1982)

    Google Scholar 

  2. Dumas, J.G., Saunders, B., Villard, G.: On Efficient Sparse Integer Matrix Smith Normal Form Computations. J. of Symbolic Computation (2001)

    Google Scholar 

  3. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological Persistence and Simplification. In: Proc. 41st Symp. on Foundations of Computer Science, pp. 454–463 (2000)

    Google Scholar 

  4. Gui, X., Havas, G.: On the Worst-case Complexity of Integer Gaussian Elimination. In: Proc. of ISSAC 1997, pp. 28–31 (1997)

    Google Scholar 

  5. González–Díaz, R., Real, P.: Computation of Cohomology Operations on Finite Simplicial Complexes. Homology, Homotopy and Applications 5(2), 83–93 (2003)

    MATH  MathSciNet  Google Scholar 

  6. González–Díaz, R., Real, P.: Towards Digital Cohomology. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 92–101. Springer, Heidelberg (2003)

    Google Scholar 

  7. González–Díaz, R., Real, P.: On the Cohomology of 3D Digital Images. Discrete Applied Math. 147, 245–263 (2005)

    Article  MATH  Google Scholar 

  8. Gonzalez-Diaz, R., Medrano, B., Real, P., Sánchez-Peláez, J.: Reusing Integer Homology Information of Binary Digital Images. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 199–210. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Gonzalez-Diaz, R., Medrano, B., Real, P., Sánchez-Peláez, J.: Simplicial Perturbation Technique and Effective Homology. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 166–177. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Iliopoulus, O.S.: Worst-case Complexity Bounds on Algorithms for Computing the Canonical Structure of Finite Abelian Groups and the Hermite and Smith Normal Forms of an Integer Matrix. SIAM J. Comput. 18, 658–669 (1989)

    Article  MathSciNet  Google Scholar 

  11. Massey, W.M.: A Basic Course in Algebraic Topology. New York (1991)

    Google Scholar 

  12. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Applied Mathematical Sciences, vol. 157. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  13. Munkres, J.R.: Elements of Algebraic Topology. Addison–Wesley Co. London (1984)

    MATH  Google Scholar 

  14. Peltier, S., Alayrangues, S., Fuchs, L., Lachaud, J.: Computation of Homology Groups and Generators. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 195–205. Springer, Heidelberg (2005)

    Google Scholar 

  15. Peltier, S., Fuchs, L., Lienhardt, P.: Homology of Simploidal Set. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 235–246. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Sergeraert, F.: Homologie effective. I, II. C. R. Acad. Sci. Paris Sér. I Math. 304, vol. 11, pp. 279–282, vol. 12, pp. 319–321 (1987)

    Google Scholar 

  17. Storjohann, A.: Near Optimal Algorithms for Computing Smith Normal Forms of Integral Matrices. Proc. of ISSAC 1996, pp. 267–274 (1996)

    Google Scholar 

  18. Zomorodian, A., Carlsson, G.: Computing Persistent Homology. In: Proc. of the 20th annual Symposium on Computational Geometry, pp. 347–356 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Escolano Mario Vento

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gonzalez-Diaz, R., Jiménez, M.J., Medrano, B., Real, P. (2007). Extending the Notion of AT-Model for Integer Homology Computation. In: Escolano, F., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2007. Lecture Notes in Computer Science, vol 4538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72903-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72903-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72902-0

  • Online ISBN: 978-3-540-72903-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics