Skip to main content

Ultrasound Basics

  • Chapter
Book cover Molecular Imaging I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 185/1))

Abstract

Imaging technologies for in vivo functional and molecular imaging in small animals have undergone a very fast development in the last years with very intense competition to further develop resolution and molecular sensitivity. Among the imaging technologies available, ultrasound-based molecular imaging methods are of particular interest, since the use of ultrasound contrast agents allows specific and sensitive depiction of molecular targets. Together with new developments in quantification methods of targeted microbubbles, sonography represents a dynamic and seminal tool for molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker JP (2005) The history of sonographers. J Ultrasound Med 24:1-14

    PubMed  Google Scholar 

  • Becher, Burns PN (2000) Handbook of contrast echocardiography. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Burns PN, Powers JE, Fritzsch T (1992) Harmonic imaging: a new imaging and Doppler method for contrast enhanced ultrasound. Radiology 185:142

    Google Scholar 

  • Chapman CS, Lazenby JC (1997) Ultrasound imaging system employing phase inversion substrac-tion to enhance the image. US Patent No. 5,632,2777

    Google Scholar 

  • Cosgrove D (1996) Warum brauchen wir Kontrastmittel f ür den Ultraschall? Clin Radiol 51 Suppl. 1,1-4.

    Article  PubMed  Google Scholar 

  • De Jong N, Cornet R, Lancee CT (1994) Higher harmonics of vibrating gas-filled microspheres. Part one: Simulations. Ultrasonics 32:447-453

    Article  Google Scholar 

  • DeJong N (1997) Physics of microbubble scattering. In: Nanda NC, Schlief R, Goldberg BB (eds) Advances in echo imaging using contrast enhancement, 2nd edn. Kluwer, Dordrecht, pp 39-64

    Google Scholar 

  • De Jong N, Bouakaz A, Ten Cate FJ (2002) Contrast harmonic imaging. Ultrasonics 40: 567-573

    Article  PubMed  Google Scholar 

  • Eckersley RJ, Chin CT, Burns PN (2005) Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power. Ultrasound Med Biol 31:213-212

    Article  PubMed  Google Scholar 

  • Edler I, Lindstr öm K (2004) The history of echocardiography. Ultrasound Med Biol 30:1565-1644

    Article  PubMed  Google Scholar 

  • Ellegala DB, Leong-Poi H, Carpenter JE et al (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3 . Circulation 108:336-341

    Article  PubMed  Google Scholar 

  • Forsberg F, Shi WT, Goldberg BB (2000) Subharmonic imaging of contrats agents. Ultrasonics 38:93-98

    Article  CAS  PubMed  Google Scholar 

  • Foster FS, Burns PN, Simpson DH et al (2000) Ultrasound for the visualization and quantification of tumour microcirculation. Cancer Metastasis Rev 19:131-138

    Article  CAS  PubMed  Google Scholar 

  • Foster FS, Pavlin CJ, Harasiewicz KA et al (2000) Advances in ultrasound biomicroscopy. Ultra-sound Med Biol 26:1-27

    Article  CAS  Google Scholar 

  • Foster FS, Zhang MY, Zhou YQ (2002) A new ultrasound instrument for in vivo microimaging of mice. Ultrasound Med Biol 28:1165

    Article  CAS  PubMed  Google Scholar 

  • Franco M, Man S, Chen L (2006) Targeted anti-vascular endothelial growth factor receptor-2 ther-apy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia. Cancer Res 66:3639-3648

    Article  CAS  PubMed  Google Scholar 

  • Frentzel-Beyme B (1994) Als die Bilder laufen lernten oder die Geschichte der Ultraschalldiagnos-tik [When the pictures started moving — history of diagnostic ultrasound]. Ultraschall Klein Prax 8:265-275

    Google Scholar 

  • Frentzel-Beyme B (2005) Vom Echolot zur Farbdopplersonographie- Die Geschichte der Ultraschalldiagnostik. Radiologe 45:363-370

    Article  CAS  PubMed  Google Scholar 

  • Goertz DE, Christopher DA, Yu JL et al (2000) High-frequency color flow imaging of the micro-circulation. Ultrasound Med Biol 26:63-71

    Article  CAS  PubMed  Google Scholar 

  • Goertz DE, Yu JL, Kerbel RS et al (2002) High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow. Cancer Res 62:6371-6375

    CAS  PubMed  Google Scholar 

  • Goertz DE, Yu JL, Kerbel RS et al (2003) High-frequency 3-D color-flow imaging of the micro-circulation. Ultrasound Med Biol 29:39-51

    Article  PubMed  Google Scholar 

  • Goertz DE, Needles A, Burns PN et al (2005) High Frequency Nonlinear Color Flow Imaging of Microbubble Contrast Agents. IEEE Trans Ultrason, Ferroelect, Freq Contr 52:495-502

    Article  Google Scholar 

  • Goertz DE, Frijlink ME, de Jong N et al (2006) High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent. Ultrasound Med Biol 32:569-77

    Article  PubMed  Google Scholar 

  • Kulandavelu S, Qu D, Sunn N et al (2006) Embryonic and neonatal phenotyping of genetically engineered mice. Ilar J 47:103-17

    CAS  PubMed  Google Scholar 

  • Lorenz A, Betsch B (1995) Zur Geschichte der Ultraschalldiagnostik - von der Compoundtechnik zur Realtimesonographie. Ultraschall Klin Prax 10:41-49

    Google Scholar 

  • Olbrich C, Hauff P, Scholle F et al (2006) The in vitro stability of air-filled polybutylcyanoacrylate microparticles. Biomaterials 27:3549-3559

    CAS  PubMed  Google Scholar 

  • Postema M, van Wamel A, Lancee CT et al (2004) Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med Biol 30: 827-840

    Article  PubMed  Google Scholar 

  • Postema M, Boukaz A, Versluis M et al (2005) Ultrasound-induced gas release from contrast agent microbubbles. IEEE Trans Ultrason, Ferroelect, Freq Contr 52:1035-1041

    Article  Google Scholar 

  • Poulsen Nautrup C, Tobias R (2001) Atlas und Lehrbuch der Ultraschalldiagnostik bei Hund und Katze, 3rd edn. Schl ütersche, Hannover

    Google Scholar 

  • Reinhardt M, Fritzsch T, Heldmann D et al (1993) Use of microcapsules as contrasting agents in colour Doppler sonography. WO 93/25241

    Google Scholar 

  • Reinhardt M, Hauff P, Briel A et al (2005) Sensitive particle acoustic quantification (SPAQ): a new ultrasound-based approach for the quantification of ultrasound contrast media in high concen-trations. Invest Radiol 40:2-7

    CAS  PubMed  Google Scholar 

  • Schrope V, Newhouse VL, Uhlendorf V (1992) Simulated capillary blood flow measurement using a non-linear ultrasonic contrast agent. Ultrasonic Imag 14:134-158

    Article  CAS  Google Scholar 

  • Schrope V, Newhouse VL (1993) Second harmonic ultrasonic blood perfusion measurement. Ultrasound Med Biol 19:567-579

    Article  CAS  PubMed  Google Scholar 

  • Shaked Y, Ciarrochi A, Franco M et al (2006) Therapy induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313:1785-1787

    Article  CAS  PubMed  Google Scholar 

  • Uhlendorf V, Hoffmann C (1994) Nonlinear acoustic response of coated microbubbles in diagnos-tic ultrasound. In: Ultrasonics Symposium, Cannes, France, pp 1559-1562

    Google Scholar 

  • Tiemann K, Pohl C, Schlosser T et al (2000) Stimulated acoustic emission: pseudo-Doppler shifts seen during the destruction of non-moving microbubbles. Ultrasound Med Biol 26:1161-1167

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Mukdadi O, Kim H et al (2005) Advantages in using multifrequency excitation of con-trast microbubbles for enhancing echo particle image velocity techniques: initial numerical studies using rectangular and triangular waves. Ultrasound Med Biol 32:99-108

    Article  Google Scholar 

  • Zhou YQ, Foster FS, Qu DW et al (2002) Applications for multi-frequency ultrasound biomi-croscopy in mice from implantation to adulthood. Physiol Genomics 10:113-126

    CAS  PubMed  Google Scholar 

  • Zhou YQ, Foster FS, Nieman BJ et al (2004) Comprehensive transthoracic cardiac imaging in mice using ultrasound biomicroscopy with anatomical confirmation by magnetic resonance imaging. Physiol Genomics 18:232-244

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hauff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hauff, P., Reinhardt, M., Foster, S. (2008). Ultrasound Basics. In: Semmler, W., Schwaiger, M. (eds) Molecular Imaging I. Handbook of Experimental Pharmacology, vol 185/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72718-7_5

Download citation

Publish with us

Policies and ethics