Skip to main content

A Novel Coenzyme F420 Dependent Sulfite Reductase and a Small Sulfite Reductase in Methanogenic Archaea

  • Conference paper
Microbial Sulfur Metabolism

Recently a novel, highly active, coenzyme F420 dependent sulfite reductase (Fsr) has been discovered in Methanocaldococcus jannaschii. Three other extremophilic methanogens and an uncultured archaeon from a consortium performing anaerobic oxidation of methane (AOM) carry Fsr homologs. Methanogens require sulfide and most are sensitive to sulfite. Since Fsr is induced by sulfite, reduces sulfite to sulfide with H2F420, and seems to be associated with the membrane, it is a sulfite detoxification and assimilation enzyme. The N-terminal half of Fsr is a homolog of H2F420 dehydrogenase (FqoF/FpoF). FqoF/FpoF is the electron input unit of a membrane-bound electron transport system of late-evolving methylotrophic methanogens and Archaeoglobus fulgidus, a sulfate reducing archaeon employing the partial reverse methanogenesis pathway. The C-terminal half (Fsr-C) represents a dissimilatory sulfite reductase subunit (DsrA). While only four methanogens carry Fsr, every methanogen carries a small putative sulfite reductase with sequence features of Fsr-C. These observations lead to following hypotheses. At one time methanogenesis and sulfate reduction involving a sulfite reductase, two of the oldest energy-conserving respiratory metabolisms of Earth, existed in one organism that performed sulfate reduction driven AOM. Fsr gave rise to FqoF/FpoF and DsrA, or from a small sulfite reductase of methanogens DsrA and Fsr (a fusion with FqoF/FpoF) evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balderston WL, Payne WJ (1976) Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides. Appl Environ Microbiol 32:264–269.

    CAS  PubMed  Google Scholar 

  • Baumer S, Murakami E, Brodersen J, Gottschalk G, Ragsdale SW, Deppenmeier U (1998) The F420H2:heterodisulfide oxidoreductase system from Methanosarcina species. 2-Hydroxyphenazine mediates electron transfer from F420H2 dehydrogenase to heterodisulfide reductase. FEBS Lett 428:295–298.

    Article  CAS  PubMed  Google Scholar 

  • Becker DF, Ragsdale SW (1998) Activation of methyl-SCoM reductase to high specific activity after treatment of whole cells with sodium sulfide. Biochemistry 37:2639–2647.

    Article  CAS  PubMed  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626.

    Article  CAS  PubMed  Google Scholar 

  • Boone DR, Whitman WB, Rouviére P (1993) Microbiology, diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman and Hall, New York, pp 35–80.

    Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NSM, Weidman JF, Fuhrmann JL, Nguyen D, Utterback TR, Kelley JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Roberts KM, Hurst MA, Kaine BP, Borodovsky M, Klenk H-P, Frasher CM, Smith HO, Woese CR, Venter JC. (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073.

    Article  CAS  PubMed  Google Scholar 

  • Crane BR, Getzoff ED (1996) The relationship between structure and function for the sulfite reductases. Curr Opin Struct Biol 6:744–756.

    Article  CAS  PubMed  Google Scholar 

  • Dahl C, Kredich NM, Deutzmann R, Truper HG (1993) Dissimilatory sulphite reductase from Archaeoglobus fulgidus: physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. J Gen Microbiol 139(Pt 8):1817–1828.

    CAS  PubMed  Google Scholar 

  • Dahl C, Speich N, Truper HG (1994) Enzymology and molecular biology of sulfate reduction in extremely thermophilic archaeon Archaeoglobus fulgidus. Methods Enzymol 243:331–349.

    Article  CAS  PubMed  Google Scholar 

  • Daniels L, Belay N, Rajagopal BS (1986) Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. Appl Environ Microbiol 51:703–709.

    CAS  PubMed  Google Scholar 

  • Deppenmeier U (2004) The membrane-bound electron transport system of Methanosarcina species. J Bioenerg Biomembr 36:55–64.

    Article  CAS  PubMed  Google Scholar 

  • Dhillon A, Goswami S, Riley M, Teske A, Sogin M (2005) Domain evolution and functional diversification of sulfite reductases. Astrobiology 5:18–29.

    Article  CAS  PubMed  Google Scholar 

  • DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–394.

    Article  CAS  PubMed  Google Scholar 

  • Franzmann PD, Springer N, Ludwig W, Conway de Macario E, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581.

    Google Scholar 

  • Graham DE, Xu H, White RH (2002) Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes. J Biol Chem 277:13421–13429.

    Article  CAS  PubMed  Google Scholar 

  • Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462.

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805.

    Article  CAS  PubMed  Google Scholar 

  • Huang CJ, Barrett EL (1991) Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite. J Bacteriol 173:1544–1553.

    CAS  PubMed  Google Scholar 

  • Jannasch HW (1989) Chemosynthetically sustained ecosystems in the deep sea. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, New York, pp 147–166.

    Google Scholar 

  • Johnson EF, Mukhopadhyay B (2005) A new type of sulfite reductase, a novel coenzyme F420-dependent enzyme, from the methanarchaeon Methanocaldococcus jannaschii. J Biol Chem 280:38776–38786.

    Article  CAS  PubMed  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extreme thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261.

    Article  CAS  Google Scholar 

  • Kah LC, Lyons TW, Frank TD (2004) Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–838.

    Article  CAS  PubMed  Google Scholar 

  • Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D’Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370.

    Article  CAS  PubMed  Google Scholar 

  • Lee JP, LeGall J, Peck HD, Jr. (1973) Isolation of assimilatory- and dissimilatory-type sulfite reductases from Desulfovibrio vulgaris. J Bacteriol 115:529–542.

    CAS  PubMed  Google Scholar 

  • LeGall J, Fauque G (1988) Dissimilatory reduction of sulfur compounds. In: Zenhder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 587–693.

    Google Scholar 

  • Leigh JA (2002) Evolution of energy metabolism. In: Staley JT, Reysenbach AL (eds) Biodiversity of microbial life: foundation of earth biosphere. Wiley, New York, pp 103–120.

    Google Scholar 

  • Lubbe YJ, Youn HS, Timkovich R, Dahl C (2006) Siro(haem) amide in Allochromatium vinosum and relevance of DsrL and DsrN, a homolog of cobyrinic acid a, c-diamide synthase, for sulphur oxidation. FEMS Microbiol Lett 261:194–202.

    Article  PubMed  Google Scholar 

  • Mahlert F, Bauer C, Jaun B, Thauer RK, Duin EC (2002) The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: In vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2. J Biol Inorg Chem 7:500–513.

    Article  CAS  PubMed  Google Scholar 

  • Matthews JC, Timkovich R, Liu MY, Le Gall J (1995) Siroamide: a prosthetic group isolated from sulfite reductases in the genus Desulfovibrio. Biochemistry 34:5248–5251.

    Article  CAS  PubMed  Google Scholar 

  • McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61:4375–4391.

    Article  CAS  PubMed  Google Scholar 

  • Möller-Zinkhan D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol 152:362–368.

    Article  Google Scholar 

  • Moura I, Lino AR, Moura JJ, Xavier AV, Fauque G, Peck HD Jr, LeGall J (1986) Low-spin sulfite reductases: a new homologous group of non-heme iron-siroheme proteins in anaerobic bacteria. Biochem Biophys Res Commun 141:1032–1041.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Akashi T, Hase T (2000) Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin. J Inorg Biochem 82:27–32.

    Article  CAS  PubMed  Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 99:7663–7668.

    Article  CAS  PubMed  Google Scholar 

  • Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV, Pereira IA (2006) Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex–a membrane-bound redox complex involved in the sulfate respiratory pathway. Biochemistry 45:249–262.

    Article  CAS  PubMed  Google Scholar 

  • Poulton SW, Fralick PW, Canfield DE (2004) The transition to a sulphidic ocean approximately 1.84 billion years ago. Nature 431:173–177.

    Article  CAS  PubMed  Google Scholar 

  • Purwantini E, Gillis TP, Daniels L (1997) Presence of F420-dependent glucose-6-phosphate dehydrogenase in Mycobacterium and Nocardia species, but absence from Streptomyces and Corynebacterium species and methanogenic Archaea. FEMS Microbiol Lett 146:129–134.

    Article  CAS  PubMed  Google Scholar 

  • Rothe O, Thomm M (2000) A simplified method for the cultivation of extreme anaerobic Archaea based on the use of sodium sulfite as reducing agent. Extremophiles 4:247–252.

    Article  CAS  PubMed  Google Scholar 

  • Rouviere PE, Wolfe RS (1987) Use of subunits of the methylreductase protein for taxonomy of methanogenic bacteria. Arch Microbiol 148:253–259.

    Article  CAS  Google Scholar 

  • Shen Y, Knoll AH, Walter MR (2003) Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423:632–635.

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Thauer RK (2005) Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Curr Opin Microbiol 8:643–648.

    Article  CAS  PubMed  Google Scholar 

  • Slesarev AI, Mezhevaya KV, Makarova KS, Polushin NN, Shcherbinina OV, Shakhova VV, Belova GI, Aravind L, Natale DA, Rogozin IB, Tatusov RL, Wolf YI, Stetter KO, Malykh AG, Koonin EV, Kozyavkin SA (2002) The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc Natl Acad Sci USA 99:4644–4649.

    Article  CAS  PubMed  Google Scholar 

  • Stahl DA, Fishbain S, Klein M, Baker BJ, Wagner M (2002) Origins and diversification of sulfate-respiring microorganisms. Antonie Van Leeuwenhoek 81:189–195.

    Article  CAS  PubMed  Google Scholar 

  • Teske A, Dhillon A, Sogin ML (2003) Genomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis, and methane oxidation. Biol Bull 204:186–191.

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180.

    CAS  PubMed  Google Scholar 

  • Thomas I, Dubourguier H-C, Presiner G, Debeire P, Albagnac G (1987) Purification of component C from Methanosarcia mazei and immunolocalization in Methanosarcinaeae. Arch Micorbiol 148:193–201.

    Article  CAS  Google Scholar 

  • Wedzicha BL (1992) Chemistry of sulphiting agents in food. Food Addit Contam 9:449–459.

    CAS  PubMed  Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder A (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585.

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe RS (1992) Biochemistry of methanogenesis. Biochem Soc Symp 58:41–49.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johnson, E.F., Mukhopadhyay, B. (2008). A Novel Coenzyme F420 Dependent Sulfite Reductase and a Small Sulfite Reductase in Methanogenic Archaea. In: Dahl, C., Friedrich, C.G. (eds) Microbial Sulfur Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72682-1_16

Download citation

Publish with us

Policies and ethics