Skip to main content

Exploiting Diversity in Ensembles: Improving the Performance on Unbalanced Datasets

  • Conference paper
Book cover Multiple Classifier Systems (MCS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4472))

Included in the following conference series:

Abstract

Ensembles are often capable of greater predictive performance than any of their individual classifiers. Despite the need for classifiers to make different kinds of errors, the majority voting scheme, typically used, treats each classifier as though it contributed equally to the groupā€˜s performance. This can be particularly limiting on unbalanced datasets, as one is more interested in complementing classifiers that can assist in improving the true positive rate without signicantly increasing the false positive rate. Therefore, we implement a genetic algorithm based framework to weight the contribution of each classifier by an appropriate fitness function, such that the classifiers that complement each other on the unbalanced dataset are preferred, resulting in significantly improved performances. The proposed framework can be built on top of any collection of classifiers with different fitness functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning (1996)

    Google ScholarĀ 

  2. Breiman, L.: Bagging predictors. Machine LearningĀ 24(2), 123ā€“140 (1996)

    MATHĀ  MathSciNetĀ  Google ScholarĀ 

  3. Dietterich, T.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol.Ā 1857, pp. 1ā€“15. Springer, Heidelberg (2000)

    ChapterĀ  Google ScholarĀ 

  4. Kuncheva, L., Whitaker, C.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine LearningĀ 51, 181ā€“207 (2003)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  5. Sylvester, J., Chawla, N.V.: Evolutionary ensemble creation and thinning. In: International Joint Conference on Neural Networks, pp. 5148ā€“5155 (2006)

    Google ScholarĀ 

  6. van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)

    Google ScholarĀ 

  7. Chawla, N.V., et al.: SMOTE: Synthetic Minority Oversampling TEchnique. Journal of Artificial Intelligence ResearchĀ 16, 321ā€“357 (2002)

    MATHĀ  Google ScholarĀ 

  8. Provost, F., Fawcett, T.: Robust Classification for Imprecise Environments. Machine LearningĀ 42/3, 203ā€“231 (2001)

    ArticleĀ  Google ScholarĀ 

  9. Provost, F., Domingos, P.: Tree induction for probability-based rankings. Machine LearningĀ 52(3) (2003)

    Google ScholarĀ 

  10. Opitz, D.: Feature selection for ensembles. In: AAAI/IAAI, pp. 379ā€“384 (1999)

    Google ScholarĀ 

  11. Guerra-Salcedo, C., Whitley, L.D.: Genetic approach to feature selection for ensemble creation. In: International Conference on Genetic and Evolutionary Computation, pp. 236ā€“243 (1999)

    Google ScholarĀ 

  12. Yang, J., Honavar, V.: Feature subset selection using A genetic algorithm. In: Genetic Programming 1997: Proceedings of the Second Annual Conference, July 13ā€“16,1997, p. 380 (1997)

    Google ScholarĀ 

  13. Kim, Y.S., Street, N., Menczer, F.: Meta-evolutionary ensembles. In: IEEE Intl. Joint Conf. on Neural Networks, pp. 2791ā€“2796. IEEE Computer Society Press, Los Alamitos (2002)

    Google ScholarĀ 

  14. Menczer, F., Street, W.N., Degeratu, M.: Evolving heterogeneous neural agents by local selection. In: Honavar, V., Patel, M., Balakrishnan, K. (eds.) Advances in the Evolutionary Synthesis of Neural Systems, MIT Press, Cambridge (2000)

    Google ScholarĀ 

  15. Liu, Y., Yao, X., Higuchi, T.: Evolutionary ensembles with negative correlation learning. IEE Transactions on Evolutionary ComputationĀ 4(4), 380ā€“387 (2000)

    ArticleĀ  Google ScholarĀ 

  16. Kuncheva, L.I., Jain, L.C.: Designing classifier fusion systems by genetic algorithms. IEEE-ECĀ 4(4), 327ā€“336 (2000)

    Google ScholarĀ 

  17. Langdon, W.B., Buxton, B.F.: Genetic programming for combining classifiers. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 66ā€“73 (2001)

    Google ScholarĀ 

  18. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary ComputationĀ 1(1), 67ā€“82 (1997)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michal Haindl Josef Kittler Fabio Roli

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Chawla, N.V., Sylvester, J. (2007). Exploiting Diversity in Ensembles: Improving the Performance on Unbalanced Datasets. In: Haindl, M., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2007. Lecture Notes in Computer Science, vol 4472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72523-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72523-7_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72481-0

  • Online ISBN: 978-3-540-72523-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics