Skip to main content

Coordination and Control of Multi-agent Dynamic Systems: Models and Approaches

  • Conference paper
Swarm Robotics (SR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4433))

Included in the following conference series:

Abstract

The field of multi-agent dynamic systems is an inter-disciplinary research field that has become very popular in the recent years in parallel with the significant interest in the practical applications of such systems in various areas including robotics. In this article we give a relatively short review of this field from the system dynamics and control perspective. We first focus on mathematical modelling of multi-agent systems paying particular attention on the agent dynamics models available in the literature. Then we present a number of problems on coordination and control of multi-agent systems which have gained significant attention recently and various approaches to these problems. Relevant to these problems and approaches, we summarize some of the recent results on stability, robustness, and performance of multi-agent dynamic systems which appeared in the literature. The article is concluded with some remarks on the implementation and application side of the control designs developed for multi-agent systems.

The work of V. Gazi is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant 104E170. The work of B. Fidan is supported by National ICT Australia, which is funded by the Australian Government’s Department of Communications, Information Technology and the Arts and the Australian Research Council through the Backing Australia’s Ability Initiative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Comp. Graph. 21(4), 25–34 (1987)

    Article  MathSciNet  Google Scholar 

  2. Yamaguchi, H.: A cooperative hunting behavior by mobile-robot troops. The International Journal of Robotics Research 18(8), 931–940 (1999)

    Article  Google Scholar 

  3. Desai, J.P., Ostrowski, J., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. on Robotics and Automation 17(6), 905–908 (2001)

    Article  Google Scholar 

  4. Fowler, J., D’Andrea, R.: A formation flight experiment. IEEE Control Systems Magazine 23(5), 35–43 (2003)

    Article  Google Scholar 

  5. Ren, W., Beard, R.: A decentralized scheme for spacecraft formation flying via the virtual structure approach. AIAA Journal of Gudiance, Control and Dyanmics 27(1), 73–82 (2004)

    Article  Google Scholar 

  6. Stilwell, D., Bishop, B., Sylvester, C.: Redundant manipulator techniques for partially decentralized path planning and control of a platoon of autonomous vehicles. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 35(4), 842–848 (2005)

    Article  Google Scholar 

  7. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. on Robotics and Automation 20(2), 243–255 (2004)

    Article  Google Scholar 

  8. Akyildiz, I.F., Su, W., Sankarasubramniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commununications Magazine 40(8), 102–114 (2002)

    Article  Google Scholar 

  9. Sahin, E.: Swarm robotics: From sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005)

    Google Scholar 

  10. Kubik, A.: Towards a formalization of emergence. Artificial Life 9, 41–65 (2003)

    Article  Google Scholar 

  11. Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics, vol. 207. Springer, New York (2001)

    MATH  Google Scholar 

  12. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. on Automatic Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  13. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. on Automatic Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  14. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. on Automatic Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  15. Tanner, H., Pappas, G.J., Kumar, V.: Leader-to-formation stability. IEEE Trans. on Robotics and Automation 20(3), 443–455 (2004)

    Article  Google Scholar 

  16. Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. on Automatic Control 50(2), 169–182 (2005)

    Article  MathSciNet  Google Scholar 

  17. Ren, W., Beard, R.W.: Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans. on Automatic Control 50(5), 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  18. Anderson, B., Yu, C., Fidan, B., Hendrickx, J.: Control and information architectures for formations. In: Proc. IEEE Conference on Control Applications (Joint CCA/CACSD/ISIC), IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  19. Eren, T., Anderson, B., Morse, A., Whiteley, W., Belhumeur, P.: Operations on rigid formations of autonomous agents. Communications in Information and Systems 3(4), 223–258 (2004)

    MathSciNet  Google Scholar 

  20. Hendrickx, J., Anderson, B., Blondel, V.: Rigidity and persistence of directed graphs. In: Proc. 44th IEEE Conference on Decision and Control and the European Control Conference 2005, pp. 2176–2181. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  21. Hendrickx, J., Fidan, B., Yu, C., Anderson, B., Blondel, V.: Rigidity and persistence of three and higher dimensional formations. In: Proc. 2nd Int. Conf. on Informatics in Control, Automation & Robotics (ICINCO) - 1st Int. Workshop on Multi-Agent Robotic Systems (MARS), pp. 39–46 (2005)

    Google Scholar 

  22. Sandeep, S., Fidan, B., Yu, C.: Decentralized cohesive motion control of multi-agent formations. In: Proc. 14th Mediterranean Conference on Control and Automation, Ancona, Italy (2006)

    Google Scholar 

  23. Yu, C., Hendrickx, J., Fidan, B., Anderson, B.: Structural persistence of three dimensional autonomous formations. In: Proc. 2nd Int. Conf. on Informatics in Control, Automation & Robotics (ICINCO) - 1st Int. Workshop on Multi-Agent Robotic Systems (MARS), pp. 47–55 (2005)

    Google Scholar 

  24. Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. on Automatic Control 48(4), 692–697 (2003)

    Article  MathSciNet  Google Scholar 

  25. Gazi, V., Passino, K.M.: A class of attraction/repulsion functions for stable swarm aggregations. Int. J. Control 77(18), 1567–1579 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms. IEEE Trans. on Systems, Man, and Cybernetics: Part B 34(1), 539–557 (2004)

    Article  Google Scholar 

  27. Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology. IEEE Trans. on Automatic Control 48(1), 76–95 (2003)

    Article  MathSciNet  Google Scholar 

  28. Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability analysis of one-dimensional asynchronous swarms. IEEE Trans. on Automatic Control 48(10), 1848–1854 (2003)

    Article  MathSciNet  Google Scholar 

  29. Gazi, V., Passino, K.M.: Stability of a one-dimensional discrete-time asynchronous swarm. IEEE Trans. on Systems, Man, and Cybernetics: Part B 35(4), 834–841 (2005)

    Article  Google Scholar 

  30. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part i: Fixed topology. In: Proc. of Conf. Decision Contr., Maui, Hawaii, pp. 2010–2015 (2003)

    Google Scholar 

  31. Guldner, J., Utkin, V.I.: Sliding mode control for gradient tracking and robot navigation using artificial potential fields. IEEE Trans. on Robotics and Automation 11(2), 247–254 (1995)

    Article  Google Scholar 

  32. Campion, G., Bastin, G., Dandrea-Novel, B.: Structural properties and classification of kinematic and dynamicmodels of wheeled mobile robots. IEEE Tr. on Robotics and Automation 12(1), 47–62 (1996)

    Article  Google Scholar 

  33. Yi, B.J., Kim, W.: The kinematics for redundantly actuated omnidirectional mobile robots. Journal of Robotic Systems 19(6), 255–267 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of groups. In: Proc. of Conf. Decision Contr., Orlando, FL, pp. 2968–2973 (2001)

    Google Scholar 

  35. Bachmayer, R., Leonard, N.E.: Vehicle networks for gradient descent in a sampled environment. In: Proc. of Conf. Decision Contr., Las Vegas, Nevada, pp. 112–117 (2002)

    Google Scholar 

  36. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part ii: Dynamic topology. In: Proc. of Conf. Decision Contr., Maui, Hawaii, pp. 2016–2021 (2003)

    Google Scholar 

  37. Liu, Y., Passino, K.M.: Stable social foraging swarms in a noisy environment. IEEE Transactions on Automatic Control 49(1), 30–44 (2004)

    Article  MathSciNet  Google Scholar 

  38. Gazi, V.: Swarm aggregations using artificial potentials and sliding mode control. IEEE Transactions on Automatic Control 21(6), 1208–1214 (2005)

    Google Scholar 

  39. Yao, J., Ordonez, R., Gazi, V.: Swarm tracking using artificial potentials and sliding mode control. In: Proc. of Conf. Decision Contr., San Diago, CA, USA (2006)

    Google Scholar 

  40. Egerstedt, M., Hu, X.: Formation constrained multi-agent control. IEEE Trans. on Robotics and Automation 17(6), 947–951 (2001)

    Article  Google Scholar 

  41. Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphial conditions for formation control of unicycles. IEEE Trans. on Automatic Control 50(1), 121–127 (2005)

    Article  MathSciNet  Google Scholar 

  42. Marshall, J., Broucke, M., Francis, B.: Formations of vehicles in cyclic pursuit. IEEE Trans. on Automatic Control 49(11), 1963–1974 (2004)

    Article  MathSciNet  Google Scholar 

  43. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in teams of nonholonomic agents. In: Kumar, V.J., Leonard, N., Morse, S. (eds.) Cooperative Control. Lecture Notes in Control and Information Sciences, vol. 309, pp. 229–239. Springer, Heidelberg (2005)

    Google Scholar 

  44. Lawton, J.R.T., Beard, R.W., Young, B.J.: A decentralized approach to formation maneuvers. IEEE Trans. on Robotics and Automation 19(6), 933–941 (2003)

    Article  Google Scholar 

  45. Gazi, V.: Stability Analysis of Swarms. PhD thesis, The Ohio State University (2002)

    Google Scholar 

  46. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Millman, R.S., Sussmann, H.J. (eds.) Differential Geometric Control Theory, pp. 181–191. Birkhäuser, Boston (1983)

    Google Scholar 

  47. Sepulchre, R., Palay, D., Leonard, N.E.: Collective motion and oscillator synchronization. In: Kumar, V.J., Leonard, N.E., Morse, A.S. (eds.) Cooperative Control: 2003 Block Island Workshop on Cooperative Control. Lecture Notes in Control and Information Sciences, vol. 309, Springer, Heidelberg (2005)

    Google Scholar 

  48. Dubins, L.: On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. American Journal of Mathematics 79, 497–516 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  49. Savla, K., Bullo, F., Frazzoli, E.: On traveling salesperson problems for Dubins’ vehicle: stochastic and dynamic environments. In: Proc. 44th IEEE Conference on Decision and Control and the European Control Conference 2005, pp. 4530–4535. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  50. Tomlin, C., Mitchell, I., Ghosh, R.: Safety verification of conflict resolution manoeuvres. IEEE Tr. on Intelligent Transportation Systems 2(2), 110–120 (2001)

    Article  Google Scholar 

  51. Boscain, U., Piccoli, B.: Optimal Syntheses for Control Systems on 2-D Manifolds. Springer, New York (2004)

    MATH  Google Scholar 

  52. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Physical Review Letters 75(6), 1226–1229 (1995)

    Article  Google Scholar 

  53. Breder, C.M.: Equations descriptive of fish schools and other animal aggregations. Ecology 35(3), 361–370 (1954)

    Article  Google Scholar 

  54. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Advances in Biophysics 22, 1–94 (1986)

    Article  Google Scholar 

  55. Warburton, K., Lazarus, J.: Tendency-distance models of social cohesion in animal groups. Journal of Theoretical Biology 150, 473–488 (1991)

    Article  Google Scholar 

  56. Grünbaum, D., Okubo, A.: Modeling social animal aggregations. In: Frontiers in Theoretical Biology. Lecture Notes in Biomathematics, vol. 100, pp. 296–325. Springer, New York (1994)

    Google Scholar 

  57. Soysal, O., Sahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In: Proc. of the IEEE Swarm Intelligence Symposium, Pasadena, California, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  58. Bahceci, E., Sahin, E.: Evolving aggregation behaviors for swarm robotic systems: A systematic case study. In: Proc. of the IEEE Swarm Intelligence Symposium, Pasadena, California, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  59. Grünbaum, D.: Schooling as a strategy for taxis in a noisy environment. In: Parrish, J.K., Hamner, W.M. (eds.) Animal Groups in Three Dimensions, pp. 257–281. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  60. Grünbaum, D.: Schooling as a strategy for taxis in a noisy environment. Evolutionary Ecology 12, 503–522 (1998)

    Article  Google Scholar 

  61. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  62. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  63. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. on Evolutionary Computation 6(1), 58–73 (2002)

    Article  Google Scholar 

  64. Şamiloglu, A.T., Gazi, V., Koku, A.B.: Effects of asynchronism and neighborhood size on clustering in self-propelled particle systems. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 665–676. Springer, Heidelberg (2006)

    Google Scholar 

  65. Şamiloglu, A.T., Gazi, V., Koku, A.B.: An empirical study on the motion of self-propelled particles with turn angle restrictions. In: Şahin, E., et al. (eds.) SAB 2006. LNCS, Springer, Heidelberg (2006)

    Google Scholar 

  66. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Automation 15(5), 818–828 (1999)

    Article  Google Scholar 

  67. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. In: Proc. of Conf. Decision Contr., Maui, Hawaii, USA, pp. 1508–1513 (2003)

    Google Scholar 

  68. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem - the asynchronous case. In: Proc. of Conf. Decision Contr., Atlantis, Paradise Island, Bahamas, pp. 1926–1931 (2004)

    Google Scholar 

  69. Marshall, J.A., Broucke, M.E., Francis, B.A.: Pursuit formations of unicycles. Automatica 42(1), 3–12 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. Olfati-Saber, R., Murray, R.M.: Distributed cooperative control of multiple vehicle formations using structural potential functions. In: Proc. IFAC World Congress, Barcelona, Spain (2002)

    Google Scholar 

  71. Lin, Z., Broucke, M., Francis, B.: Local control strategies for groups of mobile autonomous agents. IEEE Trans. on Automatic Control 49(4), 622–629 (2004)

    Article  MathSciNet  Google Scholar 

  72. Das, A., Fierro, R., Kumar, V.: Control graphs for robot networks. In: Butenko, S., Murphey, R., Pardalos, P. (eds.) Cooperative Control: Models, Applications and Algorithms, pp. 55–73. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  73. Fierro, R., Song, P., Das, A., Kumar, V.: Cooperative control of robot formations. In: Murphey, R., Pardalos, P. (eds.) Cooperative Control and Optimization, pp. 73–94. Kluwer Academic Publishers, Dordrecht (2002)

    Chapter  Google Scholar 

  74. Yu, C., Fidan, B., Anderson, B.: Persistence acquisition and maintenance for autonomous formations. In: Proc. 2nd Int. Conf. on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 379–384 (2005)

    Google Scholar 

  75. Yu, C., Fidan, B., Anderson, B.: Principles to control autonomous formation merging. In: Proc. American Control Conference, pp. 762–768 (2006)

    Google Scholar 

  76. Das, A., Fierro, R., Kumar, V., Ostrowski, J.: A vision-based formation control framework. IEEE Trans. on Robotics and Automation 18(5), 813–825 (2002)

    Article  Google Scholar 

  77. Ögren, P., Fiorelli, E., Leonard, N.E.: Formations with a mission: Stable coordination of vehicle group maneuvers. In: Symposium on Mathematical Theory of Networks and Systems (2002)

    Google Scholar 

  78. Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coordination. In: Proc. American Control Conf., Portland, OR, USA, pp. 1859–1864 (2005)

    Google Scholar 

  79. Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts with limited sensing capabilities. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 142–153. Springer, Heidelberg (2004)

    Google Scholar 

  80. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of autonomous mobile robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  81. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont (1997)

    Google Scholar 

  82. Strogatz, S.H., Stewart, I.: Coupled oscillators and biological synchronization. Scientific American, 102–109 (1993)

    Google Scholar 

  83. Strogatz, S.H., Mirollo, R.E., Matthews, P.C.: Coupled nonlinear oscillators below the synchronization threshhold: Relaxation by generalized landau damping. Physical Review Letters 68(18), 2730–2733 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  84. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. on Automatic Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  85. Butenko, S., Murphey, R., Pardalos, P. (eds.): Cooperative Control: Models, Applications and Algorithms. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  86. Murphey, R., Pardalos, P. (eds.): Cooperative Control and Optimization. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  87. Kumar, V.J., Leonard, N.E., Morse, A.S. (eds.): Cooperative Control: 2003 Block Island Workshop on Cooperative Control. Lecture Notes in Control and Information Sciences, vol. 309. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  88. Pettersen, K., Nijmeijer, H., Gravdahl, J.T. (eds.): Group Coordination and Cooperative Control. Lecture Notes in Control and Information Sciences, vol. 336. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  89. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  90. Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. on Robotics and Automation 8(5), 501–518 (1992)

    Article  Google Scholar 

  91. Reif, J.H., Wang, H.: Social potential fields: A distributed behavioral control for autonomous robots. Robotics and Autonomous Systems 27, 171–194 (1999)

    Article  Google Scholar 

  92. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  93. Gazi, V.: Formation control of mobile robots using decentralized nonlinear servomechanism. In: 12’th Meditteranean Conference on Control and Automation, Kusadasi, Turkey (2004)

    Google Scholar 

  94. Ögren, P., Egerstedt, M., Hu, X.: A control Lyapunov function approach to multi-agent coordination. IEEE Trans. on Robotics and Automation 18(5), 847–851 (2002)

    Article  Google Scholar 

  95. Ögren, P., Fiorelli, E., Leonard, N.E.: Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed environment. IEEE Trans. on Automatic Control 49(8), 1292–1302 (2004)

    Article  Google Scholar 

  96. Wu, H., Jagannathan, S.: Adaptive neural network control and wireless sensor network-based localization for UAV formation. In: Proc. 14th Mediterranean Conference on Control and Automation, Ancona, Italy (2006)

    Google Scholar 

  97. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. on Robotics and Automation 14(6), 926–939 (1998)

    Article  Google Scholar 

  98. Harper, C.J., Winfield, A.F.T.: A methodology for provably stable intelligent control. Robotics and Autonomous Systems 54(1), 52–73 (2006)

    Article  Google Scholar 

  99. Spears, W.M., Gordon, D.F.: Using artificial physics to control agents. In: Proceedings of the IEEE International Conference on Information, Intelligence, and Systems, pp. 281–288. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  100. Gordon, D.F., Spears, W.M., Sokolsky, O., Lee, I.: Distributed spatial control, global monitoring and steering of mobile agents. In: Proceedings of the IEEE International Conference on Information, Intelligence, and Systems, pp. 681–688. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  101. Gordon-Spears, D.F., Spears, W.M.: Analysis of a phase transition in a physics-based multiagent system. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A., Gordon-Spears, D.F. (eds.) FAABS 2002. LNCS (LNAI), vol. 2699, pp. 193–207. Springer, Heidelberg (2003)

    Google Scholar 

  102. Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control of swarms of vehicles. Auton. Robots 17(2-3), 137–162 (2004)

    Article  Google Scholar 

  103. Zarzhitsky, D., Spears, D.F., Spears, W.M., Thayer, D.R.: A fluid dynamics approach to multi-robot chemical plume tracing. In: AAMAS, pp. 1476–1477 (2004)

    Google Scholar 

  104. Spears, W.M., Heil, R., Spears, D.F., Zarzhitsky, D.: Physicomimetics for mobile robot formations. In: AAMAS, pp. 1528–1529 (2004)

    Google Scholar 

  105. Spears, W.M., Spears, D.F., Heil, R.: A formal analysis of potential energy in a multi-agent system. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 131–145. Springer, Heidelberg (2004)

    Google Scholar 

  106. Zarzhitsky, D., Spears, D.F., Thayer, D.R., Spears, W.M.: Agent-based chemical plume tracing using fluid dynamics. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 146–160. Springer, Heidelberg (2004)

    Google Scholar 

  107. Spears, W.M., Spears, D.F., Heil, R., Kerr, W., Hettiarachchi, S.: An overview of physicomimetics. In: SAB, pp. 84–97 (2004)

    Google Scholar 

  108. Beni, G., Liang, P.: Pattern reconfiguration in swarms—convergence of a distributed asynchronous and bounded iterative algorithm. IEEE Trans. on Robotics and Automation 12(3), 485–490 (1996)

    Article  Google Scholar 

  109. Beni, G.: Order by disordered action in swarms. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics. LNCS, vol. 3342, pp. 153–171. Springer, Heidelberg (2005)

    Google Scholar 

  110. Şamiloglu, A.T., Gazi, V., Koku, A.B.: Asynchronous cyclic pursuit. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 667–678. Springer, Heidelberg (2006)

    Google Scholar 

  111. Gueron, S., Levin, S.A.: The dynamics of group formation. Mathematical Biosciences 128, 243–264 (1995)

    Article  MATH  Google Scholar 

  112. Durrett, R., Levin, S.: The importance of being discrete (and spatial). Theoretical Population Biology 46, 363–394 (1994)

    Article  MATH  Google Scholar 

  113. Agassounon, W., Martinoli, A., Easton, K.: Macroscopic modeling of aggregation experiments using embodied agents in teams of constant and time-varying sizes. Autonomous Robots 17(2-3), 163–192 (2004)

    Article  Google Scholar 

  114. Lerman, K., Martinoli, A., Galstyan, A.: A review of probabilistic macroscopic models for swarm robotic systems. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics. LNCS, vol. 3342, pp. 143–152. Springer, Heidelberg (2005)

    Google Scholar 

  115. Soysal, O., Sahin, E.: A macroscopic model for probabilistic aggregation in swarm robotic systems. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, Springer, Heidelberg (2006)

    Google Scholar 

  116. Baillieul, J., Suri, A.: Information patterns and hedging Brockett’s theorem in controlling vehicle formations. In: Proc. IEEE Conf. on Decision and Control, pp. 556–563. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  117. Arcak, M.: Passivity as a design tool for group coordination. In: Proc. American Control Conf., pp. 29–34 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erol Şahin William M. Spears Alan F. T. Winfield

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Gazi, V., Fidan, B. (2007). Coordination and Control of Multi-agent Dynamic Systems: Models and Approaches. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds) Swarm Robotics. SR 2006. Lecture Notes in Computer Science, vol 4433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71541-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71541-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71540-5

  • Online ISBN: 978-3-540-71541-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics