Skip to main content

Combined User Physical, Physiological and Subjective Measures for Assessing User Cost

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4397))

Abstract

New technologies are making it possible to provide an enriched view of interaction for researchers using multimodal information. This preliminary study explores the use of multimodal information streams in evaluating user cost. In the study, easy, medium and difficult versions of a game task were used to vary the levels of the cost to user. Multimodal data streams during the three versions were analyzed, including eye tracking, pupil size, hand movement, heart rate variability (HRV) and subjectively reported data. Three findings indicate the potential value of multimodal information in evaluating usability: First, subjective and physiological measures showed significant sensitivity to task difficulty. Second, different user cost levels appeared to correlate with eye movement patterns, especially with a combined eye–hand measure. Third, HRV showed correlations with saccade speed. These results warrant further investigations and take an initial step toward establishing usability evaluation methods based on multimodal information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hollnagel, E.: From human factors to cognitive systems engineering: Human–machine interactions in the 21st century. In: Kitamura, M., Kimura, I. (eds.) Anzen-no-Tankyu (Researches on Safety), ERC Publishing, Tokyo (2003)

    Google Scholar 

  2. Marshall, C., Rossman, G.B.: Designing qualitative research, 3rd edn. Sage, Thousand Oaks (1999)

    Google Scholar 

  3. Wilson, G.M., Sasse, M.A.: Investigating the impact of audio degradations on users: Subjective vs. objective assessment methods. In: The Proceedings of OZCHI 2000: Interfacing Reality in the New Millennium, Sydney, Australia, pp. 135–142 (2000)

    Google Scholar 

  4. Sweeney, M., Maguire, M., Shackel, B.: Evaluating user-computer interaction: a framework. International Journal of Man-Machine Studies 38, 689–711 (1993)

    Article  Google Scholar 

  5. Wilson, G.M.: Psychophysiological indicators of the impact of media quality on users. In: The Proceedings of CHI 2001 Doctoral Consortium, pp. 95–96. ACM Press, New York (2001)

    Google Scholar 

  6. Andreassi, J.L.: Psychophysiology: Human Behavior and Physiological Response, 4th edn. Lawrence Erlbaum, Mahwah (2000)

    Google Scholar 

  7. Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)

    Google Scholar 

  8. Vicente, K.J., Thornton, C., Moray, N.: Spectral analysis of sinus arrhythmia: A measure of mental effort. Human Factors 29, 171–182 (1987)

    Google Scholar 

  9. Ekman, P., Levenson, R.W., Friesen, W.V.: Autonomic nervous system activity distinguishes among emotions. Science 221(4616), 1208–1210 (1983)

    Article  Google Scholar 

  10. Lin, T., Hu, W.H., Omata, M., Imamiya, A.: Do physiological data relate to traditional usability indexes? In: The Proceedings of the Australian Conference on Computer Human Interaction OZCHI’05, Canberra, Australia, November 15–21 (2005)

    Google Scholar 

  11. Meehan, M., Insko, B., Whitton, M., Brooks, F.: Physiological measures of presence in stressful virtual environments. In: The Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (2002)

    Google Scholar 

  12. Rowe, D.W., Sibert, J., Irwin, D.: Heart rate variability: Indicator of user state as an aid to human–computer interaction. In: Proceedings of the CHI, pp. 480–487 (1998)

    Google Scholar 

  13. Hopman, J.C.W., Kollee, L.A.A., Stoelinga, G.B.A., Van Geijn, H.P., van Ravenswaaij-Arts, C.M.A.: Heart rate variability. Annals of Internal Medicine 118, 436–447 (1993)

    Google Scholar 

  14. Malik, M.: Heart rate variability. Circulation 93, 1043–1065 (1996)

    Google Scholar 

  15. Pomeranz, B., Macaulay, R.J.B., Caudill, M.A., et al.: Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. Heart Circ. Physiol. 248, 151–H153 (1985)

    Google Scholar 

  16. Pagani, M., Lombardi, F., Guzzetti, S.: Power spectral analysis of heart rate and arterial pressure variabilities as a maker of sympatho-vagal interaction in man and conscious dog. Cir. Res. 59, 178–193 (1986)

    Google Scholar 

  17. Ettema, J., Ziclhuis, R.L.: Physiological parameters of mental load. Ergonomics 14, 137–144 (1971)

    Article  Google Scholar 

  18. Luczak, I.I., Lauring, W.J.: An analysis of heart rate variability. Ergonomics 16, 85–97 (1973)

    Article  Google Scholar 

  19. Hyndman, B.W., Gregory, J.R.: Spectral analysis of sinus arrhythmia during mental loading. Ergonomics 18, 255–270 (1975)

    Article  Google Scholar 

  20. Boutcher, S.H., Naugent, F.W., Mclaren, P.F.: Heart period variability of trained and untrained men at rest and during mental challenge. Psychophysiology 35, 16–22 (1998)

    Article  Google Scholar 

  21. Hyde, C., Izard, C.E.: Cardiac rhythmicities and attention in young children. Psychophysiology 34, 547–552 (1997)

    Article  Google Scholar 

  22. Tattersall, A.J., Hockey, G.R.J.: Level of operator control and changes in heart rate variability during simulated flight maintenance. Human Factors 37, 682–698 (1995)

    Article  Google Scholar 

  23. Hess, E.H., Polt, J.M.: Pupil size in relation to mental activity during simple problem solving. Science 132, 1191–1192 (1964)

    Google Scholar 

  24. Hoecks, B., Levelt, W.: Pupillary dilation as a measure of attention: A quantitative system analysis. Behavior Research Methods, Instruments, & Computers 25, 16–26 (1993)

    Google Scholar 

  25. Juris, M., Velden, M.: The pupillary response to mental overload. Physiological Psychology 5(4), 421–424 (1977)

    Google Scholar 

  26. Kahneman, D.: Pupillary responses in a pitch-discrimination task. Perception & Psychophysics 2, 101–105 (1967)

    Google Scholar 

  27. Nakayama, M., Takahashi, K.: The act of task difficulty and eye-movement frequency for the oculo-motor indices. In: The Proceedings of the Eye Tracking Research and Application, pp. 37–42 (2002)

    Google Scholar 

  28. Beatty, J.: Task-evoked pupillary responses, processing load and the structure of processing resources. Psychological Bulletin 91(2), 276–292 (1982)

    Article  Google Scholar 

  29. Iqbal, S.T., Zheng, X.S., Bailey, B.P.: Task-evoked pupillary response to mental workload in human–computer interaction. In: The proceeding of CHI, pp. 1477–1480 (2004)

    Google Scholar 

  30. Hess, E.H., Petrovich, S.B.: Pupillary behavior in communication. In: Siegman, A.W., Feldstein, S. (eds.) Nonverbal Behavior and Communication, pp. 327–348. Lawrence Erlbaum, Hillsdale (1987)

    Google Scholar 

  31. Rayner, K.: Eye movements and information processing: 20 years of research. Psychological Bulletin 124(3), 372–422 (1998)

    Article  Google Scholar 

  32. Noton, D., Stark, L.W.: Scanpath in saccadic eye movements while viewing and recognizing patterns. Vision Research 11, 929–942 (1971)

    Article  Google Scholar 

  33. Goldberg, H., Kotval, X.P.: Computer interface evaluation using eye movements: Methods and constructs. International Journal of Industrial Ergonomics 24, 631–645 (1999)

    Article  Google Scholar 

  34. Hébert, S., Beland, R., Dionne-Fournelle, O., Crête, M., Lupien, S.J.: Physiological stress response to video game playing: The contribution of built-in music. Life Sciences 76, 2371–2380 (2005)

    Article  Google Scholar 

  35. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): Results of experimental and theoretical research. In: Hancock, P.A., Meshakati, N. (eds.) Human Mental Workload, pp. 39–183. North-Holland, Amsterdam (1988)

    Google Scholar 

  36. Hair, J.F., Anderson, R.E., Tatham, R.L., Black, W.C.: Multivariate Data Analysis, 5th edn. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  37. Lin, Y., Zhang, W.J., Koubek, R.J.: Effective Attention Allocation Behavior and its Measurement: A Preliminary Study. Interacting with Computers 16(Issue 6), 1195–1210 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Constantine Stephanidis Michael Pieper

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Lin, T., Imamiya, A., Hu, W., Omata, M. (2007). Combined User Physical, Physiological and Subjective Measures for Assessing User Cost. In: Stephanidis, C., Pieper, M. (eds) Universal Access in Ambient Intelligence Environments. Lecture Notes in Computer Science, vol 4397. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71025-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71025-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71024-0

  • Online ISBN: 978-3-540-71025-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics