Skip to main content

Meiotic recombination

  • Chapter

Part of the book series: Topics in Current Genetics ((TCG,volume 17))

Abstract

Crossover recombination is essential for homolog segregation during meiosis. In contrast to spontaneous mitotic recombination, meiotic recombination is intrinsic being initiated by the programmed formation of DNA double-strand-breaks. In addition, the tendencies of the core recombination machinery to utilize a sister-chromatid template and to produce a noncrossover outcome are counteracted by meiosis-specific factors, which ultimately ensure the formation of at least one crossover per homolog.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal S, Roeder GS (2000) Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell 102:245–255

    CAS  PubMed  Google Scholar 

  • Akamatsu Y, Dziadkowiec D, Ikeguchi M, Shinagawa H, Iwasaki H (2003) Two different Swi5-containing protein complexes are involved in mating-type switching and recombination repair in fission yeast. Proc Natl Acad Sci USA 100:15770–15775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alexeev A, Mazin A, Kowalczykowski SC (2003) Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat Struct Biol 10:182–186

    CAS  PubMed  Google Scholar 

  • Allers T, Lichten M (2000) A method for preparing genomic DNA that restrains branch migration of Holliday junctions. Nucleic Acids Res 28:e6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allers T, Lichten M (2001a) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106:47–57

    CAS  PubMed  Google Scholar 

  • Allers T, Lichten M (2001b) Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol Cell 8:225–231

    CAS  PubMed  Google Scholar 

  • Anderson DE, Trujillo KM, Sung P, Erickson HP (2001) Structure of the Rad50. Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy. J Biol Chem 276:37027–37033

    CAS  PubMed  Google Scholar 

  • Anuradha S, Muniyappa K (2004) Saccharomyces cerevisiae Hop1 zinc finger motif is the minimal region required for its function in vitro. J Biol Chem 279:28961–28969

    CAS  PubMed  Google Scholar 

  • Aravind L, Koonin EV (1998) The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem Sci 23:284–286

    CAS  PubMed  Google Scholar 

  • Arbel A, Zenvirth D, Simchen G (1999) Sister chromatid-based DNA repair is mediated by RAD54, not by DMC1 or TID1. EMBO J 18:2648–2658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arora C, Kee K, Maleki S, Keeney S (2004) Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol Cell 13:549–559

    CAS  PubMed  Google Scholar 

  • Bailis JM, Roeder GS (1998) Synaptonemal complex morphogenesis and sister-chromatid cohesion require Mek1-dependent phosphorylation of a meiotic chromosomal protein. Genes Dev 12:3551–3563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bailis JM, Roeder GS (2000) Pachytene exit controlled by reversal of Mek1-dependent phosphorylation. Cell 101:211–221

    CAS  PubMed  Google Scholar 

  • Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A, Ashley T, Liskay RM (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13:336–342

    CAS  PubMed  Google Scholar 

  • Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6:989–998

    CAS  PubMed  Google Scholar 

  • Baudat F, Nicolas A (1997) Clustering of meiotic double-strand breaks on yeast chromosome III. Proc Natl Acad Sci USA 94:5213–5218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Becker E, Meyer V, Madaoui H, Guerois R (2006) Detection of a tandem BRCT in Nbs1 and Xrs2 with functional implications in the DNA damage response. Bioinformatics 22:1289–1292

    CAS  PubMed  Google Scholar 

  • Bell L, Byers B (1983a) Separation of branched from linear DNA by two-dimensional gel electrophoresis. Analyt Biochem 130:527–535

    CAS  PubMed  Google Scholar 

  • Bell LR, Byers B (1983b) Homologous association of chromosomal DNA during yeast meiosis. Cold Spring Harb Symp Quant Biol 47 Pt 2:829–840

    Google Scholar 

  • Ben-Aroya S, Mieczkowski PA, Petes TD, Kupiec M (2004) The compact chromatin structure of a Ty repeated sequence suppresses recombination hotspot activity in Saccharomyces cerevisiae. Mol Cell 15:221–231

    CAS  PubMed  Google Scholar 

  • Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386:414–417

    CAS  PubMed  Google Scholar 

  • Bishop DK (1994) RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79:1081–1092

    CAS  PubMed  Google Scholar 

  • Bishop DK, Park D, Xu L, Kleckner N (1992) DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456

    CAS  PubMed  Google Scholar 

  • Bishop DK, Zickler D (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117:9–15

    CAS  PubMed  Google Scholar 

  • Blanton HL, Radford SJ, McMahan S, Kearney HM, Ibrahim JG, Sekelsky J (2005) REC, Drosophila MCM8, drives formation of meiotic crossovers. PLoS Genet 1:e40

    PubMed Central  PubMed  Google Scholar 

  • Blat Y, Kleckner N (1999) Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98:249–259

    CAS  PubMed  Google Scholar 

  • Blat Y, Protacio RU, Hunter N, Kleckner N (2002) Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 111:791–802

    CAS  PubMed  Google Scholar 

  • Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating pro-tein-protein interactions. Bioessays 21:932–939

    CAS  PubMed  Google Scholar 

  • Boddy MN, Gaillard PH, McDonald WH, Shanahan P, Yates JR 3rd, Russell P (2001) Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107:537–548

    CAS  PubMed  Google Scholar 

  • Borde V, Goldman AS, Lichten M (2000) Direct coupling between meiotic DNA replication and recombination initiation. Science 290:806–809

    CAS  PubMed  Google Scholar 

  • Borde V, Lin W, Novikov E, Petrini JH, Lichten M, Nicolas A (2004) Association of Mre11p with double-strand break sites during yeast meiosis. Mol Cell 13:389–401

    CAS  PubMed  Google Scholar 

  • Borde V, Wu TC, Lichten M (1999) Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae. Mol Cell Biol 19:4832–4842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45

    PubMed  Google Scholar 

  • Borts RH, Lichten M, Haber JE (1986) Analysis of meiosis-defective mutations in yeast by physical monitoring of recombination. Genetics 113:551–567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowring FJ, Yeadon PJ, Stainer RG, Catcheside DE (2006) Chromosome pairing and meiotic recombination in Neurospora crassa spo11 mutants. Curr Genet 50:115–123

    CAS  PubMed  Google Scholar 

  • Bugreev DV, Golub EI, Stasiak AZ, Stasiak A, Mazin AV (2005) Activation of human meiosis-specific recombinase Dmc1 by Ca2+. J Biol Chem 280:26886–26895

    CAS  PubMed  Google Scholar 

  • Cao L, Alani E, Kleckner N (1990) A pathway for generation and processing of doublestrand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089–1101

    CAS  PubMed  Google Scholar 

  • Carlton PM, Farruggio AP, Dernburg AF (2006) A link between meiotic prophase progression and crossover control. PLoS Genet 2:e12

    PubMed Central  PubMed  Google Scholar 

  • Cartagena-Lirola H, Guerini I, Viscardi V, Lucchini G, Longhese MP (2006) Budding Yeast Sae2 is an in vivo target of the Mec1 and Tel1 checkpoint kinases during meiosis. Cell Cycle 5:1549–1559

    CAS  PubMed  Google Scholar 

  • Catlett MG, Forsburg SL (2003) Schizosaccharomyces pombe Rdh54 (TID1) acts with Rhp54 (RAD54) to repair meiotic double-strand breaks. Mol Biol Cell 14:4707–4720

    CAS  PubMed Central  PubMed  Google Scholar 

  • Celerin M, Merino ST, Stone JE, Menzie AM, Zolan ME (2000) Multiple roles of Spo11 in meiotic chromosome behavior. EMBO J 19:2739–2750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chang YC, Lo YH, Lee MH, Leng CH, Hu SM, Chang CS, Wang TF (2005) Molecular visualization of the yeast Dmc1 protein ring and Dmc1-ssDNA nucleoprotein complex. Biochemistry 44:6052–6058

    CAS  PubMed  Google Scholar 

  • Chen L, Trujillo K, Ramos W, Sung P, Tomkinson AE (2001) Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol Cell 8:1105–1115

    CAS  PubMed  Google Scholar 

  • Chen L, Trujillo KM, Van Komen S, Roh DH, Krejci L, Lewis LK, Resnick MA, Sung P, Tomkinson AE (2005) Effect of amino acid substitutions in the Rad50 ATP binding domain on DNA double strand break repair in yeast. J Biol Chem 280:2620–2627

    CAS  PubMed  Google Scholar 

  • Chen YK, Leng CH, Olivares H, Lee MH, Chang YC, Kung WM, Ti SC, Lo YH, Wang AH, Chang CS, Bishop DK, Hsueh YP, Wang TF (2004) Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proc Natl Acad Sci USA 101:10572–10577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20:2067–2081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Z, Liu Y, Wang C, Parker R, Song H (2004) Crystal structure of Ski8p, a WD-repeat protein with dual roles in mRNA metabolism and meiotic recombination. Protein Sci 13:2673–2684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chua PR, Roeder GS (1997) Tam1, a telomere-associated meiotic protein, functions in chromosome synapsis and crossover interference. Genes Dev 11:1786–1800

    CAS  PubMed  Google Scholar 

  • Chua PR, Roeder GS (1998) Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93:349–359

    CAS  PubMed  Google Scholar 

  • Clerici M, Mantiero D, Lucchini G, Longhese MP (2005) The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J Biol Chem 280:38631–38638

    CAS  PubMed  Google Scholar 

  • Clerici M, Mantiero D, Lucchini G, Longhese MP (2006) The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep 7:212–218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clyne RK, Katis VL, Jessop L, Benjamin KR, Herskowitz I, Lichten M, Nasmyth K (2003) Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nat Cell Biol 5:480–485

    CAS  PubMed  Google Scholar 

  • Corbett KD, Berger JM (2003a) Emerging roles for plant topoisomerase VI. Chem Biol 10:107–111

    CAS  PubMed  Google Scholar 

  • Corbett KD, Berger JM (2003b) Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J 22:151–163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cromie GA, Hyppa RW, Taylor AF, Zakharyevich K, Hunter N, Smith GR (2006) Single Holliday junctions are intermediates of meiotic recombination. Cell in press

    Google Scholar 

  • Davis ES, Shafer BK, Strathern JN (2000) The Saccharomyces cerevisiae RDN1 locus is sequestered from interchromosomal meiotic ectopic recombination in a SIR2-dependent manner. Genetics 155:1019–1032

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Boer E, Heyting C (2006) The diverse roles of transverse filaments of synaptonemal complexes in meiosis. Chromosoma 115:220–234

    PubMed  Google Scholar 

  • de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R, Wyman C (2001) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8:1129–1135

    PubMed  Google Scholar 

  • de los Santos T, Hollingsworth NM (1999) Red1p, a MEK1-dependent phosphoprotein that physically interacts with Hop1p during meiosis in yeast. J Biol Chem 274:1783–1790

    PubMed  Google Scholar 

  • de los Santos T, Hunter N, Lee C, Larkin B, Loidl J, Hollingsworth NM (2003) The Mus81/Mms4 endonuclease acts independently of double-holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164:81–94

    PubMed Central  PubMed  Google Scholar 

  • de los Santos T, Loidl J, Larkin B, Hollingsworth NM (2001) A role for MMS4 in the processing of recombination intermediates during meiosis in Saccharomyces cerevisiae. Genetics 159:1511–1525

    PubMed Central  PubMed  Google Scholar 

  • De Massy B, Baudat F, Nicolas A (1994) Initiation of recombination in Saccharomyces cerevisiae haploid meiosis. Proc Natl Acad Sci USA 91:11929–11933

    PubMed Central  PubMed  Google Scholar 

  • de Massy B, Rocco V, Nicolas A (1995) The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J 14:4589–4598

    PubMed Central  PubMed  Google Scholar 

  • Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94:387–398

    CAS  PubMed  Google Scholar 

  • Diaz RL, Alcid AD, Berger JM, Keeney S (2002) Identification of residues in yeast Spo11p critical for meiotic DNA double-strand break formation. Mol Cell Biol 22:1106–1115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F, Yang YP, Petukhova GV, Eckhaus M, Feigenbaum L, Manova K, Kruhlak M, Camerini-Otero RD, Sharan S, Nussenzweig M, Nussenzweig A (2005) Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 7:675–685

    CAS  PubMed  Google Scholar 

  • Domenichini S, Raynaud C, Ni DA, Henry Y, Bergounioux C (2006) Atmnd1-1 is sensi-tive to gamma-irradiation and defective in meiotic DNA repair. DNA Repair (Amst) 5:455–464

    CAS  Google Scholar 

  • Dong H, Roeder GS (2000) Organization of the yeast Zip1 protein within the central region of the synaptonemal complex. J Cell Biol 148:417–426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dray E, Siaud N, Dubois E, Doutriaux MP (2006) Interaction between Arabidopsis Brca2 and its partners Rad51, Dmc1, and Dss1. Plant Physiol 140:1059–1069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dresser ME, Ewing DJ, Conrad MN, Dominguez AM, Barstead R, Jiang H, Kodadek T (1997) DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway. Genetics 147:533–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28

    CAS  PubMed  Google Scholar 

  • Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, Umar A, Kunkel T, Cattoretti G, Chaganti R, Pollard JW, Kolodner RD, Kucherlapati R (1996) Meiotic pachytene arrest in MLH1-deficient mice. Cell 85:1125–1134

    CAS  PubMed  Google Scholar 

  • Ellermeier C, Schmidt H, Smith GR (2004) Swi5 acts in meiotic DNA joint molecule for-mation in Schizosaccharomyces pombe. Genetics 168:1891–1898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engebrecht JA, Voelkel-Meiman K, Roeder GS (1991) Meiosis-specific RNA splicing in yeast. Cell 66:1257–1268

    CAS  PubMed  Google Scholar 

  • Enomoto R, Kinebuchi T, Sato M, Yagi H, Shibata T, Kurumizaka H, Yokoyama S (2004) Positive role of the mammalian TBPIP/HOP2 protein in DMC1-mediated homologous pairing. J Biol Chem 279:35263–35272

    CAS  PubMed  Google Scholar 

  • Evans DH, Li YF, Fox ME, Smith GR (1997) A WD repeat protein, Rec14, essential for meiotic recombination in Schizosaccharomyces pombe. Genetics 146:1253–1264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fabre F, Boulet A, Roman H (1984) Gene conversion at different points in the mitotic cycle of Saccharomyces cerevisiae. Mol Gen Genet 195:139–143

    CAS  PubMed  Google Scholar 

  • Fan QQ, Petes TD (1996) Relationship between nuclease-hypersensitive sites and meiotic recombination hot spot activity at the HIS4 locus of Saccharomyces cerevisiae. Mol Cell Biol 16:2037–2043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flores-Rozas H, Kolodner RD (1998) The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc Natl Acad Sci USA 95:12404–12409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fox ME, Virgin JB, Metzger J, Smith GR (1997) Position-and orientation-independent activity of the Schizosaccharomyces pombe meiotic recombination hot spot M26. Proc Natl Acad Sci USA 94:7446–7451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fox ME, Yamada T, Ohta K, Smith GR (2000) A family of cAMP-response-elementrelated DNA sequences with meiotic recombination hotspot activity in Schizosaccharomyces pombe. Genetics 156:59–68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedman DB, Hollingsworth NM, Byers B (1994) Insertional mutations in the yeast HOP1 gene: evidence for multimeric assembly in meiosis. Genetics 136:449–464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fung JC, Rockmill B, Odell M, Roeder GS (2004) Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116:795–802

    CAS  PubMed  Google Scholar 

  • Furuse M, Nagase Y, Tsubouchi H, Murakami-Murofushi K, Shibata T, Ohta K (1998) Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J 17:6412–6425

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Diaz M, Bebenek K, Gao G, Pedersen LC, London RE, Kunkel TA (2005) Structure-function studies of DNA polymerase lambda. DNA Repair (Amst) 4:1358–1367

    CAS  Google Scholar 

  • Garcia-Diaz M, Dominguez O, Lopez-Fernandez LA, de Lera LT, Saniger ML, Ruiz JF, Parraga M, Garcia-Ortiz MJ, Kirchhoff T, del Mazo J, Bernad A, Blanco L (2000) DNA polymerase lambda (Pol lambda), a novel eukaryotic DNA polymerase with a potential role in meiosis. J Mol Biol 301:851–867

    CAS  PubMed  Google Scholar 

  • Gardiner JM, Bullard SA, Chrome C, Malone RE (1997) Molecular and genetic analysis of REC103, an early meiotic recombination gene in yeast. Genetics 146:1265–1274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gasior SL, Olivares H, Ear U, Hari DM, Weichselbaum R, Bishop DK (2001) Assembly of RecA-like recombinases: distinct roles for mediator proteins in mitosis and meiosis. Proc Natl Acad Sci USA 98:8411–8418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD (2000) Inaugural article: global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:11383–11390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerton JL, DeRisi JL (2002) Mnd1p: an evolutionarily conserved protein required for meiotic recombination. Proc Natl Acad Sci USA 99:6895–6900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorlov IP, Gorlova OY (2001) Cost-benefit analysis of recombination and its application for understanding of chiasma interference. J Theor Biol 213:1–8

    CAS  PubMed  Google Scholar 

  • Gottlieb S, Esposito RE (1989) A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56:771–776

    CAS  PubMed  Google Scholar 

  • Grell RF (1984) Time of recombination in the Drosophila melanogaster oocyte. III. Selection and characterization of temperature-sensitive and-insensitive recombinationdeficient alleles in Drosophila. Genetics 108:425–443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guillon H, Baudat F, Grey C, Liskay RM, de Massy B (2005) Crossover and noncrossover pathways in mouse meiosis. Mol Cell 20:563–573

    CAS  PubMed  Google Scholar 

  • Haber JE, Thorburn PC, Rogers D (1984) Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. Genetics 106:185–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayase A, Takagi M, Miyazaki T, Oshiumi H, Shinohara M, Shinohara A (2004) A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119:927–940

    CAS  PubMed  Google Scholar 

  • Henderson DS, Wiegand UK, Norman DG, Glover DM (2000) Mutual correction of faulty PCNA subunits in temperature-sensitive lethal mus209 mutants of Drosophila melanogaster. Genetics 154:1721–1733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henderson KA, Kee K, Maleki S, Santini PA, Keeney S (2006) Cyclin-dependent kinase directly regulates initiation of meiotic recombination. Cell 125:1321–1332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henderson KA, Keeney S (2004) Tying synaptonemal complex initiation to the formation and programmed repair of DNA double-strand breaks. Proc Natl Acad Sci USA 101:4519–4524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henderson KA, Keeney S (2005) Synaptonemal complex formation: where does it start? Bioessays 27:995–998

    CAS  PubMed  Google Scholar 

  • Henry JM, Camahort R, Rice DA, Florens L, Swanson SK, Washburn MP, Gerton JL (2006) Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast. Mol Cell Biol 26:2913–2923

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heyer WD (2004) Recombination: Holliday junction resolution and crossover formation. Curr Biol 14:R56–58

    CAS  PubMed  Google Scholar 

  • Heyer WD, Ehmsen KT, Solinger JA (2003) Holliday junctions in the eukaryotic nucleus: resolution in sight? Trends Biochem Sci 28:548–557

    CAS  PubMed  Google Scholar 

  • Heyer WD, Li X, Rolfsmeier M, Zhang XP (2006) Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res 4115–4125

    Google Scholar 

  • Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FC (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hillers KJ (2004) Crossover interference. Curr Biol 14:R1036–1037

    CAS  PubMed  Google Scholar 

  • Hochwagen A, Tham WH, Brar GA, Amon A (2005) The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activ-ity. Cell 122:861–873

    CAS  PubMed  Google Scholar 

  • Hoffmann ER, Borts RH (2004) Meiotic recombination intermediates and mismatch repair proteins. Cytogenet Genome Res 107:232–248

    CAS  PubMed  Google Scholar 

  • Hoffmann ER, Borts RH (2005) Trans events associated with crossovers are revealed in the absence of mismatch repair genes in Saccharomyces cerevisiae. Genetics 169:1305–1310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffmann ER, Eriksson E, Herbert BJ, Borts RH (2005) MLH1 and MSH2 promote the symmetry of double-strand break repair events at the HIS4 hotspot in Saccharomyces cerevisiae. Genetics 169:1291–1303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollingsworth NM, Brill SJ (2004) The Mus81 solution to resolution: generating meiotic crossovers without Holliday junctions. Genes Dev 18:117–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollingsworth NM, Johnson AD (1993) A conditional allele of the Saccharomyces cerevisiae HOP1 gene is suppressed by overexpression of two other meiosis-specific genes: RED1 and REC104. Genetics 133:785–797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollingsworth NM, Ponte L, Halsey C (1995) MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev 9:1728–1739

    CAS  PubMed  Google Scholar 

  • Holzen TM, Shah PP, Olivares HA, Bishop DK (2006) Tid1/Rdh54 promotes dissociation of Dmc1 from nonrecombinogenic sites in meiotic chromatin. Genes Dev 20: 2593–604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong EL, Shinohara A, Bishop DK (2001) Saccharomyces cerevisiae Dmc1 protein promotes renaturation of single-strand DNA (ssDNA) and assimilation of ssDNA into homologous super-coiled duplex DNA. J Biol Chem 276:41906–41912

    CAS  PubMed  Google Scholar 

  • Hooker GW, Roeder GS (2006) A Role for SUMO in meiotic chromosome synapsis. Curr Biol 16:1238–1243

    CAS  PubMed  Google Scholar 

  • Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, Karcher A, Henderson B, Bodmer JL, McMurray CT, Carney JP, Petrini JH, Tainer JA (2002) The Rad50 zinchook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418:562–566

    CAS  PubMed  Google Scholar 

  • Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA (2001) Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105:473–485

    CAS  PubMed  Google Scholar 

  • Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101:789–800

    CAS  PubMed  Google Scholar 

  • Hunter N (2004) Meiosis. The Encyclopedia of Biological Chemistry 2: 610–616

    Google Scholar 

  • Hunter N, Borts RH (1997) Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev 11:1573–1582

    CAS  PubMed  Google Scholar 

  • Hunter N, Kleckner N (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106:59–70

    CAS  PubMed  Google Scholar 

  • Interthal H, Heyer WD (2000) MUS81 encodes a novel helix-hairpin-helix protein involved in the response to UV-and methylation-induced DNA damage in Saccharomyces cerevisiae. Mol Gen Genet 263:812–827

    CAS  PubMed  Google Scholar 

  • Ira G, Malkova A, Liberi G, Foiani M, Haber JE (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115:401–411

    CAS  PubMed  Google Scholar 

  • Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–323

    CAS  PubMed  Google Scholar 

  • Jackson JA, Fink GR (1985) Meiotic recombination between duplicated genetic elements in Saccharomyces cerevisiae. Genetics 109:303–332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jantsch V, Pasierbek P, Mueller MM, Schweizer D, Jantsch M, Loidl J (2004) Targeted gene knockout reveals a role in meiotic recombination for ZHP-3, a Zip3-related pro-tein in Caenorhabditis elegans. Mol Cell Biol 24:7998–8006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaskelioff M, Van Komen S, Krebs JE, Sung P, Peterson CL (2003) Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J Biol Chem 278:9212–9218

    CAS  PubMed  Google Scholar 

  • Jessop L, Allers T, Lichten M (2005) Infrequent co-conversion of markers flanking a meiotic recombination initiation site in Saccharomyces cerevisiae. Genetics 169:1353–1367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiao K, Salem L, Malone R (2003) Support for a meiotic recombination initiation complex: interactions among Rec102p, Rec104p, and Spo11p. Mol Cell Biol 23:5928–5938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    CAS  PubMed  Google Scholar 

  • Jolivet S, Vezon D, Froger N, Mercier R (2006) Non conservation of the meiotic function of the Ski8/Rec103 homolog in Arabidopsis. Genes Cells 11:615–622

    CAS  PubMed  Google Scholar 

  • Jones GH (1984) The control of chiasma distribution. Symp Soc Exp Biol 38:293–320

    CAS  PubMed  Google Scholar 

  • Jones GH, Franklin FC (2006) Meiotic crossing-over: obligation and interference. Cell 126:246–248

    CAS  PubMed  Google Scholar 

  • Kaback DB (1996) Chromosome-size dependent control of meiotic recombination in humans. Nat Genet 13:20–21

    CAS  PubMed  Google Scholar 

  • Kaback DB, Barber D, Mahon J, Lamb J, You J (1999) Chromosome size-dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference. Genetics 152:1475–1486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaback DB, Guacci V, Barber D, Mahon JW (1992) Chromosome size-dependent control of meiotic recombination. Science 256:228–232

    CAS  PubMed  Google Scholar 

  • Kaback DB, Steensma HY, de Jonge P (1989) Enhanced meiotic recombination on the smallest chromosome of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 86:3694–3698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadyk LC, Hartwell LH (1992) Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132:387–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126:297–308

    CAS  PubMed  Google Scholar 

  • Kateneva AV, Dresser ME (2006) Sister chromatid cohesion remodeling and meiotic recombination. Cell Cycle 5:467–471

    CAS  PubMed  Google Scholar 

  • Kateneva AV, Konovchenko AA, Guacci V, Dresser ME (2005) Recombination protein Tid1p controls resolution of cohesin-dependent linkages in meiosis in Saccharomyces cerevisiae. J Cell Biol 171:241–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kauppi L, Jeffreys AJ, Keeney S (2004) Where the crossovers are: recombination distributions in mammals. Nat Rev Genet 5:413–424

    CAS  PubMed  Google Scholar 

  • Kaye JA, Melo JA, Cheung SK, Vaze MB, Haber JE, Toczyski DP (2004) DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr Biol 14:2096–2106

    CAS  PubMed  Google Scholar 

  • Kee K, Keeney S (2002) Functional interactions between SPO11 and REC102 during initiation of meiotic recombination in Saccharomyces cerevisiae. Genetics 160:111–122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kee K, Protacio RU, Arora C, Keeney S (2004) Spatial organization and dynamics of the association of Rec102 and Rec104 with meiotic chromosomes. EMBO J 23:1815–1824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    CAS  PubMed  Google Scholar 

  • Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384

    CAS  PubMed  Google Scholar 

  • Keeney S, Kleckner N (1995) Covalent protein-DNA complexes at the 5’ strand termini of meiosis-specific double-strand breaks in yeast. Proc Natl Acad Sci USA 92:11274–11278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keeney S, Kleckner N (1996) Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both in cis and in trans. Genes Cells 1:475–489

    CAS  PubMed  Google Scholar 

  • Kerzendorfer C, Vignard J, Pedrosa-Harand A, Siwiec T, Akimcheva S, Jolivet S, Sablowski R, Armstrong S, Schweizer D, Mercier R, Schlogelhofer P (2006) The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pair-ing, synapsis and recombination. J Cell Sci 119:2486–2496

    CAS  PubMed  Google Scholar 

  • Khazanehdari KA, Borts RH (2000) EXO1 and MSH4 differentially affect crossing-over and segregation. Chromosoma 109:94–102

    CAS  PubMed  Google Scholar 

  • Kinebuchi T, Kagawa W, Enomoto R, Tanaka K, Miyagawa K, Shibata T, Kurumizaka H, Yokoyama S (2004) Structural basis for octameric ring formation and DNA interaction of the human homologous-pairing protein Dmc1. Mol Cell 14:363–374

    CAS  PubMed  Google Scholar 

  • Kirkpatrick DT, Fan Q, Petes TD (1999a) Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain. Genetics 152:101–115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirkpatrick DT, Ferguson JR, Petes TD, Symington LS (2000) Decreased meiotic inter-genic recombination and increased meiosis I nondisjunction in exo1 mutants of Sac-charomyces cerevisiae. Genetics 156:1549–1557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirkpatrick DT, Wang YH, Dominska M, Griffith JD, Petes TD (1999b) Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes. Mol Cell Biol 19:7661–7671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kironmai KM, Muniyappa K, Friedman DB, Hollingsworth NM, Byers B (1998) DNA-binding activities of Hop1 protein, a synaptonemal complex component from Sac-charomyces cerevisiae. Mol Cell Biol 18:1424–1435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleckner N, Zickler D, Jones GH, Dekker J, Padmore R, Henle J, Hutchinson J (2004) A mechanical basis for chromosome function. Proc Natl Acad Sci USA 101:12592–12597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K, Nasmyth K (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103

    CAS  PubMed  Google Scholar 

  • Klein HL (1997) RDH54, a RAD54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147:1533–1543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein S, Zenvirth D, Dror V, Barton AB, Kaback DB, Simchen G (1996) Patterns of meiotic double-strand breakage on native and artificial yeast chromosomes. Chromosoma 105:276–284

    CAS  PubMed  Google Scholar 

  • Klieger Y, Yizhar O, Zenvirth D, Shtepel-Milman N, Snoek M, Simchen G (2005) Involvement of Sir2/4 in silencing of DNA breakage and recombination on mouse YACs during yeast meiosis. Mol Biol Cell 16:1449–1455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H Jr, Kolodner RD, Kucherlapati R, Pollard JW, Edelmann W (2000) MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 14:1085–1097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi J, Antoccia A, Tauchi H, Matsuura S, Komatsu K (2004) NBS1 and its functional role in the DNA damage response. DNA Repair (Amst) 3:855–86

    CAS  Google Scholar 

  • Kobayashi Y, Watanabe M, Okada Y, Sawa H, Takai H, Nakanishi M, Kawase Y, Suzuki H, Nagashima K, Ikeda K, Motoyama N (2002) Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome. Mol Cell Biol 22:2769–2776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kovalenko OV, Plug AW, Haaf T, Gonda DK, Ashley T, Ward DC, Radding CM, Golub EI (1996) Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proc Natl Acad Sci USA 93:2958–2963

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305–309

    CAS  PubMed  Google Scholar 

  • Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271

    CAS  PubMed  Google Scholar 

  • Lee BI, Wilson DM 3rd (1999) The RAD2 domain of human exonuclease 1 exhibits 5’ to 3’ exonuclease and flap structure-specific endonuclease activities. J Biol Chem 274:37763–37769

    CAS  PubMed  Google Scholar 

  • Lee MH, Chang YC, Hong EL, Grubb J, Chang CS, Bishop DK, Wang TF (2005) Calcium ion promotes yeast Dmc1 activity via formation of long and fine helical filaments with single-stranded DNA. J Biol Chem 280:40980–40984

    CAS  PubMed  Google Scholar 

  • Leem SH, Ogawa H (1992) The MRE4 gene encodes a novel protein kinase homologue required for meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res 20:449–457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leem SH, Ropp PA, Sugino A (1994) The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair. Nucleic Acids Res 22:3011–3017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leu JY, Chua PR, Roeder GS (1998) The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 94:375–386

    CAS  PubMed  Google Scholar 

  • Li J, Hooker GW, Roeder GS (2006) Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation. Genetics 173:1969–1981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lichten M, Goldman AS (1995) Meiotic recombination hotspots. Annu Rev Genet 29:423–444

    CAS  PubMed  Google Scholar 

  • Lipkin SM, Moens PB, Wang V, Lenzi M, Shanmugarajah D, Gilgeous A, Thomas J, Cheng J, Touchman JW, Green ED, Schwartzberg P, Collins FS, Cohen PE (2002) Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat Genet 31:385–390

    CAS  PubMed  Google Scholar 

  • Lisby M, Rothstein R (2005) Localization of checkpoint and repair proteins in eukaryotes. Biochimie 87:579–589

    CAS  PubMed  Google Scholar 

  • Lobachev K, Vitriol E, Stemple J, Resnick MA, Bloom K (2004) Chromosome fragmentation after induction of a double-strand break is an active process prevented by the RMX repair complex. Curr Biol 14:2107–2112

    CAS  PubMed  Google Scholar 

  • Lui DY, Peoples-Holst TL, Mell JC, Wu HY, Dean EW, Burgess SM (2006) Analysis of close stable homolog juxtaposition during meiosis in mutants of Saccharomyces cerevisiae. Genetics 173:1207–1222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madrona AY, Wilson DK (2004) The structure of Ski8p, a protein regulating mRNA degradation: Implications for WD protein structure. Protein Sci 13:1557–1565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maiorano D, Cuvier O, Danis E, Mechali M (2005) MCM8 is an MCM2-7-related protein that functions as a DNA helicase during replication elongation and not initiation. Cell 120:315–328

    CAS  PubMed  Google Scholar 

  • Maiorano D, Lutzmann M, Mechali M (2006) MCM proteins and DNA replication. Curr Opin Cell Biol 18:130–136

    CAS  PubMed  Google Scholar 

  • Maleki S, Keeney S (2004) Modifying histones and initiating meiotic recombination; new answers to an old question. Cell 118:404–406

    CAS  PubMed  Google Scholar 

  • Malkova A, Swanson J, German M, McCusker JH, Housworth EA, Stahl FW, Haber JE (2004) Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168:49–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maloisel L, Bhargava J, Roeder GS (2004) A role for DNA polymerase delta in gene con-version and crossing over during meiosis in Saccharomyces cerevisiae. Genetics 167:1133–1142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mao-Draayer Y, Galbraith AM, Pittman DL, Cool M, Malone RE (1996) Analysis of meiotic recombination pathways in the yeast Saccharomyces cerevisiae. Genetics 144:71–86

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcon E, Moens P (2003) MLH1p and MLH3p localize to precociously induced chiasmata of okadaic-acid-treated mouse spermatocytes. Genetics 165:2283–2287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin V, Chahwan C, Gao H, Blais V, Wohlschlegel J, Yates JR 3rd, McGowan CH, Russell P (2006) Sws1 is a conserved regulator of homologous recombination in eukaryotic cells. EMBO J 25:2564–2574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martini E, Diaz RL, Hunter N, Keeney S (2006) Crossover homeostasis in yeast meiosis. Cell 126: 285–95

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masai H, Arai K (2002) Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol 190:287–296

    CAS  PubMed  Google Scholar 

  • Mather K (1933) The relations between chiasmata and crossing-over in diploid and triploid Drosophila melanogaster. J Genet 27:243–259

    Google Scholar 

  • Matsubayashi H, Yamamoto MT (2003) REC, a new member of the MCM-related protein family, is required for meiotic recombination in Drosophila. Genes Genet Syst 78:363–371

    CAS  PubMed  Google Scholar 

  • Mazina OM, Mazin AV, Nakagawa T, Kolodner RD, Kowalczykowski SC (2004) Saccharomyces cerevisiae Mer3 helicase stimulates 3’–5’ heteroduplex extension by Rad51; implications for crossover control in meiotic recombination. Cell 117:47–56

    CAS  PubMed  Google Scholar 

  • McKee AH, Kleckner N (1997a) A general method for identifying recessive diploidspecific mutations in Saccharomyces cerevisiae, its application to the isolation of mu-tants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146:797–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKee AH, Kleckner N (1997b) Mutations in Saccharomyces cerevisiae that block meiotic prophase chromosome metabolism and confer cell cycle arrest at pachytene identify two new meiosis-specific genes SAE1 and SAE3. Genetics 146:817–834

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKim KS, Hayashi-Hagihara A (1998) mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev 12:2932–2942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merker JD, Dominska M, Petes TD (2003) Patterns of heteroduplex formation associated with the initiation of meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 165:47–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mieczkowski PA, Dominska M, Buck MJ, Gerton JL, Lieb JD, Petes TD (2006) Global analysis of the relationship between the binding of the Bas1p transcription factor and meiosis-specific double-strand DNA breaks in Saccharomyces cerevisiae. Mol Cell Biol 26:1014–1027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuno K, Emura Y, Baur M, Kohli J, Ohta K, Shibata T (1997) The meiotic recombination hot spot created by the single-base substitution ade6-M26 results in remodeling of chromatin structure in fission yeast. Genes Dev 11:876–886

    CAS  PubMed  Google Scholar 

  • Mizuno K, Hasemi T, Ubukata T, Yamada T, Lehmann E, Kohli J, Watanabe Y, Iino Y, Yamamoto M, Fox ME, Smith GR, Murofushi H, Shibata T, Ohta K (2001) Counter-acting regulation of chromatin remodeling at a fission yeast cAMP response element-related recombination hotspot by stress-activated protein kinase, cAMP-dependent kinase and meiosis regulators. Genetics 159:1467–1478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moens PB, Pearlman RE (1988) Chromatin organization at meiosis. Bioessays 9:151–153

    CAS  PubMed  Google Scholar 

  • Moncalian G, Lengsfeld B, Bhaskara V, Hopfner KP, Karcher A, Alden E, Tainer JA, Paull TT (2004) The Rad50 signature motif: essential to ATP binding and biological function. J Mol Biol 335:937–951

    CAS  PubMed  Google Scholar 

  • Moreau S, Ferguson JR, Symington LS (1999) The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol 19:556–566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moreno-Herrero F, de Jager M, Dekker NH, Kanaar R, Wyman C, Dekker C (2005) Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature 437:440–443

    CAS  PubMed  Google Scholar 

  • Muller HJ (1916) The mechanism of crossing over. Am Nat 50:193–221

    Google Scholar 

  • Muniyappa K, Anuradha S, Byers B (2000) Yeast meiosis-specific protein Hop1 binds to G4 DNA and promotes its formation. Mol Cell Biol 20:1361–1369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami H, Borde V, Shibata T, Lichten M, Ohta K (2003) Correlation between premei-otic DNA replication and chromatin transition at yeast recombination initiation sites. Nucleic Acids Res 31:4085–4090

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nabeshima K, Kakihara Y, Hiraoka Y, Nojima H (2001) A novel meiosis-specific protein of fission yeast, Meu13p, promotes homologous pairing independently of homologous recombination. EMBO J 20:3871–3881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nabeshima K, Villeneuve AM, Hillers KJ (2004) Chromosome-wide regulation of meiotic crossover formation in Caenorhabditis elegans requires properly assembled chromo-some axes. Genetics 168:1275–1292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nag DK, Petes TD (1993) Physical detection of heteroduplexes during meiotic recombination in the yeast Saccharomyces cerevisiae. Mol Cell Biol 13:2324–2331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nairz K, Klein F (1997) mre11S—a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev 11:2272–2290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakada D, Matsumoto K, Sugimoto K (2003) ATM-related Tel1 associates with doublestrand breaks through an Xrs2-dependent mechanism. Genes Dev 17:1957–1962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa T, Kolodner RD (2002) Saccharomyces cerevisiae Mer3 is a DNA helicase involved in meiotic crossing over. Mol Cell Biol 22:3281–3291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa T, Ogawa H (1997) Involvement of the MRE2 gene of yeast in formation of meiosis-specific double-strand breaks and crossover recombination through RNA splicing. Genes Cells 2:65–79

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Ogawa H (1999) The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO J 18:5714–5723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nichols MD, DeAngelis K, Keck JL, Berger JM (1999) Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. EMBO J 18:6177–6188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nilsson NO, Sall T (1995) A model of chiasma reduction of closely formed crossovers. J Theor Biol 173:93–98

    CAS  PubMed  Google Scholar 

  • Nishant KT, Rao MR (2006) Molecular features of meiotic recombination hot spots. Bioessays 28:45–56

    CAS  PubMed  Google Scholar 

  • Niu H, Wan L, Baumgartner B, Schaefer D, Loidl J, Hollingsworth NM (2005) Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1. Mol Biol Cell 16:5804–5818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novak JE, Ross-Macdonald PB, Roeder GS (2001) The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics 158:1013–1025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogino K, Hirota K, Matsumoto S, Takeda T, Ohta K, Arai K, Masai H (2006) Hsk1 kinase is required for induction of meiotic dsDNA breaks without involving checkpoint kinases in fission yeast. Proc Natl Acad Sci USA 103:8131–8136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta K, Nicolas A, Furuse M, Nabetani A, Ogawa H, Shibata T (1998) Mutations in the MRE11, RAD50, XRS2, and MRE2 genes alter chromatin configuration at meiotic DNA double-stranded break sites in premeiotic and meiotic cells. Proc Natl Acad Sci USA 95:646–651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta K, Shibata T, Nicolas A (1994) Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J 13:5754–5763

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okada T, Keeney S (2005) Homologous recombination: needing to have my say. Curr Biol 15:R200–202

    CAS  PubMed  Google Scholar 

  • Osman F, Dixon J, Doe CL, Whitby MC (2003) Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol Cell 12:761–774

    CAS  PubMed  Google Scholar 

  • Panoli AP, Ravi M, Sebastian J, Nishal B, Reddy TV, Marimuthu MP, Subbiah V, Vijaybhaskar V, Siddiqi I (2006) AtMND1 is required for homologous pairing during meiosis in Arabidopsis. BMC Mol Biol 7:24

    PubMed Central  PubMed  Google Scholar 

  • Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Passy SI, Yu X, Li Z, Radding CM, Masson JY, West SC, Egelman EH (1999) Human Dmc1 protein binds DNA as an octameric ring. Proc Natl Acad Sci USA 96:10684–10688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paull TT, Gellert M (1999) Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13:1276–1288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pecina A, Smith KN, Mezard C, Murakami H, Ohta K, Nicolas A (2002) Targeted stimulation of meiotic recombination. Cell 111:173–184

    CAS  PubMed  Google Scholar 

  • Pellicioli A, Foiani M (2005) Signal transduction: how Rad53 kinase is activated. Curr Biol 15:R769–771

    CAS  PubMed  Google Scholar 

  • Peoples TL, Dean E, Gonzalez O, Lambourne L, Burgess SM (2002) Close, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independently of synapsis, and is distinct from DSB-independent pairing con-tacts. Genes Dev 16:1682–1695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perry J, Kleckner N, Borner GV (2005) Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling. Proc Natl Acad Sci USA 102:17594–17599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–369

    CAS  PubMed  Google Scholar 

  • Petes TD, Merker JD (2002) Context dependence of meiotic recombination hotspots in yeast: the relationship between recombination activity of a reporter construct and base composition. Genetics 162:2049–2052

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petrini JH (2005) At the end, remodeling leads to eviction. Nat Struct Mol Biol 12:1028–1029

    CAS  PubMed  Google Scholar 

  • Petronczki M, Siomos MF, Nasmyth K (2003) Un Ménage à Quatre: the molecular biology of chromosome segregation in meiosis. Cell 112:423–440

    CAS  PubMed  Google Scholar 

  • Petukhova G, Sung P, Klein H (2000) Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1. Genes Dev 14:2206–2215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petukhova G, Van Komen S, Vergano S, Klein H, Sung P (1999) Yeast Rad54 promotes Rad51-dependent homologous DNA pairing via ATP hydrolysis-driven change in DNA double helix conformation. J Biol Chem 274:29453–29462

    CAS  PubMed  Google Scholar 

  • Petukhova GV, Pezza RJ, Vanevski F, Ploquin M, Masson JY, Camerini-Otero RD (2005) The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat Struct Mol Biol 12:449–453

    CAS  PubMed  Google Scholar 

  • Petukhova GV, Romanienko PJ, Camerini-Otero RD (2003) The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev Cell 5:927–936

    CAS  PubMed  Google Scholar 

  • Pezza RJ, Petukhova GV, Ghirlando R, Camerini-Otero RD (2006) Molecular activities of meiosis-specific proteins Hop2, Mnd1, and the Hop2-Mnd1 complex. J Biol Chem 281:18426–18434

    CAS  PubMed  Google Scholar 

  • Plug AW, Clairmont CA, Sapi E, Ashley T, Sweasy JB (1997) Evidence for a role for DNA polymerase beta in mammalian meiosis. Proc Natl Acad Sci USA 94:1327–1331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pochart P, Woltering D, Hollingsworth NM (1997) Conserved properties between function-ally distinct MutS homologs in yeast. J Biol Chem 272:30345–30349

    CAS  PubMed  Google Scholar 

  • Prieler S, Penkner A, Borde V, Klein F (2005) The control of Spo11’s interaction with mei-otic recombination hotspots. Genes Dev 19:255–269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prinz S, Amon A, Klein F (1997) Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Ge-netics 146:781–795

    CAS  Google Scholar 

  • Rattray AJ, McGill CB, Shafer BK, Strathern JN (2001) Fidelity of mitotic double-strandbreak repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 158:109–122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy KC, Villeneuve AM (2004) C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell 118:439–452

    CAS  PubMed  Google Scholar 

  • Rockmill B, Roeder GS (1990) Meiosis in asynaptic yeast. Genetics 126:563–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rockmill B, Roeder GS (1991) A meiosis-specific protein kinase homolog required for chromosome synapsis and recombination. Genes Dev 5:2392–2404

    CAS  PubMed  Google Scholar 

  • Rockmill B, Sym M, Scherthan H, Roeder GS (1995) Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev 9:2684–2695

    CAS  PubMed  Google Scholar 

  • Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987

    CAS  PubMed  Google Scholar 

  • Ross-Macdonald P, Roeder GS (1994) Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79:1069–1080

    CAS  PubMed  Google Scholar 

  • Saito TT, Tougan T, Kasama T, Okuzaki D, Nojima H (2004) Mcp7, a meiosis-specific coiled-coil protein of fission yeast, associates with Meu13 and is required for meiotic recombination. Nucleic Acids Res 32:3325–3339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salem L, Walter N, Malone R (1999) Suppressor analysis of the Saccharomyces cerevisiae gene REC104 reveals a genetic interaction with REC102. Genetics 151:1261–1272

    CAS  PubMed Central  PubMed  Google Scholar 

  • SanSegundo PA, Roeder GS (1999) Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97:313–324

    CAS  Google Scholar 

  • Santucci-Darmanin S, Neyton S, Lespinasse F, Saunieres A, Gaudray P, Paquis-Flucklinger V (2002) The DNA mismatch-repair MLH3 protein interacts with MSH4 in meiotic cells, supporting a role for this MutL homolog in mammalian meiotic recombination. Hum Mol Genet 11:1697–1706

    CAS  PubMed  Google Scholar 

  • Santucci-Darmanin S, Walpita D, Lespinasse F, Desnuelle C, Ashley T, Paquis-Flucklinger V (2000) MSH4 acts in conjunction with MLH1 during mammalian meiosis. FASEB J 14:1539–1547

    CAS  PubMed  Google Scholar 

  • Schild D, Byers B (1978) Meiotic effects of DNA-defective cell division cycle mutations of Saccharomyces cerevisiae. Chromosoma 70:109–130

    CAS  PubMed  Google Scholar 

  • Schmekel K (2000) Methods for immunoelectron microscopic and fine structural analysis of synaptonemal complexes and nodules in yeast. Chromosoma 109:110–116

    CAS  PubMed  Google Scholar 

  • Schmekel K, Meuwissen RL, Dietrich AJ, Vink AC, van Marle J, van Veen H, Heyting C (1996) Organization of SCP1 protein molecules within synaptonemal complexes of the rat. Exp Cell Res 226:20–30

    CAS  PubMed  Google Scholar 

  • Schmuckli-Maurer J, Heyer WD (2000) Meiotic recombination in RAD54 mutants of Saccharomyces cerevisiae. Chromosoma 109:86–93

    CAS  PubMed  Google Scholar 

  • Schommer C, Beven A, Lawrenson T, Shaw P, Sablowski R (2003) AHP2 is required for bivalent formation and for segregation of homologous chromosomes in Arabidopsis meiosis. Plant J 36:1–11

    CAS  PubMed  Google Scholar 

  • Schwacha A, Kleckner N (1994) Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76:51–63

    CAS  PubMed  Google Scholar 

  • Schwacha A, Kleckner N (1995) Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83:783–791

    CAS  PubMed  Google Scholar 

  • Schwacha A, Kleckner N (1997) Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90:1123–1135

    CAS  PubMed  Google Scholar 

  • Sehorn MG, Sigurdsson S, Bussen W, Unger VM, Sung P (2004) Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429:433–437

    CAS  PubMed  Google Scholar 

  • Sheridan S, Bishop DK (2006) Red-Hed regulation: recombinase Rad51, though capable of playing the leading role, may be relegated to supporting Dmc1 in budding yeast meio-sis. Genes Dev 20:1685–1691

    CAS  PubMed  Google Scholar 

  • Shima H, Suzuki M, Shinohara M (2005) Isolation and characterization of novel xrs2 mutations in Saccharomyces cerevisiae. Genetics 170:71–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinohara A, Gasior S, Ogawa T, Kleckner N, Bishop DK (1997a) Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 2:615–629

    CAS  PubMed  Google Scholar 

  • Shinohara A, Shinohara M (2004) Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination. Cytogenet Genome Res 107:201–207

    CAS  PubMed  Google Scholar 

  • Shinohara M, Gasior SL, Bishop DK, Shinohara A (2000) Tid1/Rdh54 promotes colocalization of rad51 and dmc1 during meiotic recombination. Proc Natl Acad Sci USA 97:10814–10819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinohara M, Sakai K, Ogawa T, Shinohara A (2003a) The mitotic DNA damage checkpoint proteins Rad17 and Rad24 are required for repair of double-strand breaks during meiosis in yeast. Genetics 164:855–865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinohara M, Sakai K, Shinohara A, Bishop DK (2003b) Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54-and DMC1-dependent pathway. Genetics 163:1273–1286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinohara M, Shita-Yamaguchi E, Buerstedde JM, Shinagawa H, Ogawa H, Shinohara A (1997b) Characterization of the roles of the Saccharomyces cerevisiae RAD54 gene and a homologue of RAD54, RDH54/TID1, in mitosis and meiosis. Genetics 147:1545–1556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shor E, Weinstein J, Rothstein R (2005) A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: four genes involved in error-free DNA repair. Genetics 169:1275–1289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siaud N, Dray E, Gy I, Gerard E, Takvorian N, Doutriaux MP (2004) Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. EMBO J 23:1392–1401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sjogren C, Nasmyth K (2001) Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr Biol 11:991–995

    CAS  PubMed  Google Scholar 

  • Smith AV, Roeder GS (1997) The yeast Red1 protein localizes to the cores of meiotic chromosomes. J Cell Biol 136:957–967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith GR, Boddy MN, Shanahan P, Russell P (2003) Fission yeast Mus81. Eme1 Holliday junction resolvase is required for meiotic crossing over but not for gene conversion. Genetics 165:2289–2293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Snowden T, Acharya S, Butz C, Berardini M, Fishel R (2004) hMSH4-hMSH5 recognizes Holliday junctions and forms a meiosis-specific sliding clamp that embraces homolo-gous chromosomes. Mol Cell 15:437–451

    CAS  PubMed  Google Scholar 

  • Solinger JA, Kiianitsa K, Heyer WD (2002) Rad54, a Swi2/Snf2-like recombinational re-pair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10:1175–1188

    CAS  PubMed  Google Scholar 

  • Sollier J, Lin W, Soustelle C, Suhre K, Nicolas A, Geli V, de La Roche Saint-Andre C (2004) Set1 is required for meiotic S-phase onset, double-strand break formation and middle gene expression. EMBO J 23:1957–1967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stahl FW, Foss HM, Young LS, Borts RH, Abdullah MF, Copenhaver GP (2004) Does crossover interference count in Saccharomyces cerevisiae? Genetics 168:35–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Storlazzi A, Tesse S, Gargano S, James F, Kleckner N, Zickler D (2003) Meiotic double-strand breaks at the interface of chromosome movement, chromosome remodeling, and reductional division. Genes Dev 17:2675–2687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Storlazzi A, Xu L, Cao L, Kleckner N (1995) Crossover and noncrossover recombination during meiosis: timing and pathway relationships. Proc Natl Acad Sci USA 92:8512–8516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Storlazzi A, Xu L, Schwacha A, Kleckner N (1996) Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Proc Natl Acad Sci USA 93:9043–9048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Story RM, Bishop DK, Kleckner N, Steitz TA (1993) Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast. Science 259:1892–1896

    CAS  PubMed  Google Scholar 

  • Stracker TH, Theunissen JW, Morales M, Petrini JH (2004) The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together. DNA Repair (Amst) 3:845–854

    CAS  Google Scholar 

  • Strom L, Lindroos HB, Shirahige K, Sjogren C (2004) Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16:1003–1015

    PubMed  Google Scholar 

  • Strom L, Sjogren C (2005) DNA damage-induced cohesion. Cell Cycle 4:536–539

    PubMed  Google Scholar 

  • Sun H, Treco D, Schultes NP, Szostak JW (1989) Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90

    CAS  PubMed  Google Scholar 

  • Sun H, Treco D, Szostak JW (1991) Extensive 3’-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination ini-tiation site. Cell 64:1155–1161

    CAS  PubMed  Google Scholar 

  • Sym M, Engebrecht JA, Roeder GS (1993) Zip1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72:365–378

    CAS  PubMed  Google Scholar 

  • Sym M, Roeder GS (1994) Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell 79:283–292

    CAS  PubMed  Google Scholar 

  • Symington LS, Heyer WD (2006) Some disassembly required: role of DNA translocases in the disruption of recombination intermediates and dead-end complexes. Genes Dev 20:2479–2486

    CAS  PubMed  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    CAS  PubMed  Google Scholar 

  • Tan TL, Kanaar R, Wyman C (2003) Rad54, a Jack of all trades in homologous recombination. DNA Repair (Amst) 2:787–794

    Google Scholar 

  • Tarsounas M, Pearlman RE, Gasser PJ, Park MS, Moens PB (1997) Protein-protein interactions in the synaptonemal complex. Mol Biol Cell 8:1405–1414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tesse S, Storlazzi A, Kleckner N, Gargano S, Zickler D (2003) Localization and roles of Ski8p protein in Sordaria meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. Proc Natl Acad Sci USA 100:12865–12870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tonami Y, Murakami H, Shirahige K, Nakanishi M (2005) A checkpoint control linking meiotic S phase and recombination initiation in fission yeast. Proc Natl Acad Sci USA 102:5797–5801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tran PT, Erdeniz N, Symington LS, Liskay RM (2004) EXO1-A multi-tasking eukaryotic nuclease. DNA Repair (Amst) 3:1549–1559

    CAS  Google Scholar 

  • Trujillo KM, Roh DH, Chen L, Van Komen S, Tomkinson A, Sung P (2003) Yeast Xrs2 binds DNA and helps target Rad50 and Mre11 to DNA ends. J Biol Chem 278:48957–48964

    CAS  PubMed  Google Scholar 

  • Tsubouchi H, Ogawa H (1998) A novel mre11 mutation impairs processing of doublestrand breaks of DNA during both mitosis and meiosis. Mol Cell Biol 18:260–268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsubouchi H, Ogawa H (2000) Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol Biol Cell 11:2221–2233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsubouchi H, Roeder GS (2002) The Mnd1 protein forms a complex with Hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol Cell Biol 22:3078–3088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsubouchi H, Roeder GS (2003) The importance of genetic recombination for fidelity of chromosome pairing in meiosis. Dev Cell 5:915–925

    CAS  PubMed  Google Scholar 

  • Tsubouchi H, Roeder GS (2004) The budding yeast Mei5 and Sae3 proteins act together with Dmc1 during meiotic recombination. Genetics 168:1219–1230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsubouchi H, Roeder GS (2006) Budding yeast Hed1 down-regulates the mitotic recombination machinery when meiotic recombination is impaired. Genes Dev 20:1766–1775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsubouchi T, Zhao H, Roeder GS (2006) The meiosis-specific Zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with Zip2. Dev Cell 10:809–819

    CAS  PubMed  Google Scholar 

  • Tsukamoto Y, Mitsuoka C, Terasawa M, Ogawa H, Ogawa T (2005) Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and mei-otic recombination. Mol Biol Cell 16:597–608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsukuda T, Fleming AB, Nickoloff JA, Osley MA (2005) Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438:379–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turney D, de Los Santos T, Hollingsworth NM (2004) Does chromosome size affect map distance and genetic interference in budding yeast? Genetics 168:2421–2424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uchiyama Y, Kimura S, Yamamoto T, Ishibashi T, Sakaguchi K (2004) Plant DNA poly-merase lambda, a DNA repair enzyme that functions in plant meristematic and meiotic tissues. Eur J Biochem 271:2799–2807

    CAS  PubMed  Google Scholar 

  • Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16:991–1002

    PubMed  Google Scholar 

  • Usui T, Ogawa H, Petrini JH (2001) A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell 7:1255–1266

    CAS  PubMed  Google Scholar 

  • van Attikum H, Fritsch O, Hohn B, Gasser SM (2004) Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA doublestrand break repair. Cell 119:777–788

    PubMed  Google Scholar 

  • van Attikum H, Gasser SM (2005a) ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4:1011–1014

    PubMed  Google Scholar 

  • van Attikum H, Gasser SM (2005b) The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6:757–765

    PubMed  Google Scholar 

  • van Veen JE, Hawley RS (2003) Meiosis: when even two is a crowd. Curr Biol 13:R831–833

    PubMed  Google Scholar 

  • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312

    CAS  PubMed  Google Scholar 

  • Villeneuve AM, Hillers KJ (2001) Whence meiosis? Cell 106:647–650

    CAS  PubMed  Google Scholar 

  • Voegtli WC, Madrona AY, Wilson DK (2003) The structure of Aip1p, a WD repeat protein that regulates Cofilin-mediated actin depolymerization. J Biol Chem 278:34373–34379

    CAS  PubMed  Google Scholar 

  • von Wettstein D, Rasmussen SW, Holm PB (1984) The synaptonemal complex in genetic segregation. Annu Rev Genet 18:331–413

    Google Scholar 

  • Wan L, de los Santos T, Zhang C, Shokat K, Hollingsworth NM (2004) Mek1 kinase activity functions downstream of RED1 in the regulation of meiotic double strand break repair in budding yeast. Mol Biol Cell 15:11–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440

    CAS  PubMed  Google Scholar 

  • Wang TF, Kleckner N, Hunter N (1999) Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc Natl Acad Sci USA 96:13914–13919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Ira G, Tercero JA, Holmes AM, Diffley JF, Haber JE (2004) Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 24:6891–6899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warren CD, Eckley DM, Lee MS, Hanna JS, Hughes A, Peyser B, Jie C, Irizarry R, Spencer FA (2004) S-phase checkpoint genes safeguard high-fidelity sister chromatid cohesion. Mol Biol Cell 15:1724–1735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei K, Clark AB, Wong E, Kane MF, Mazur DJ, Parris T, Kolas NK, Russell R, Hou H Jr, Kneitz B, Yang G, Kunkel TA, Kolodner RD, Cohen PE, Edelmann W (2003) Inacti-vation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev 17:603–614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiner BM, Kleckner N (1994) Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77:977–991

    CAS  PubMed  Google Scholar 

  • Wesoly J, Agarwal S, Sigurdsson S, Bussen W, Van Komen S, Qin J, van Steeg H, van Benthem J, Wassenaar E, Baarends WM, Ghazvini M, Tafel AA, Heath H, Galjart N, Essers J, Grootegoed JA, Arnheim N, Bezzubova O, Buerstedde JM, Sung P, Kanaar R (2006) Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol Cell Biol 26:976–989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitby MC (2005) Making crossovers during meiosis. Biochem Soc Trans 33:1451–1455

    CAS  PubMed  Google Scholar 

  • White MA, Dominska M, Petes TD (1993) Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 90:6621–6625

    CAS  PubMed Central  PubMed  Google Scholar 

  • White MA, Wierdl M, Detloff P, Petes TD (1991) DNA-binding protein Rap1 stimulates meiotic recombination at the HIS4 locus in yeast. Proc Natl Acad Sci USA 88:9755–9759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willems AR, Schwab M, Tyers M (2004) A hitchhiker’s guide to the cullin ubiquitin ligases: SCF and its kin. Biochim Biophys Acta 1695:133–170

    CAS  PubMed  Google Scholar 

  • Wilson TE, Lieber MR (1999) Efficient processing of DNA ends during yeast nonhomolo-gous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway. J Biol Chem 274:23599–23609

    CAS  PubMed  Google Scholar 

  • Wiltzius JJ, Hohl M, Fleming JC, Petrini JH (2005) The Rad50 hook domain is a critical determinant of Mre11 complex functions. Nat Struct Mol Biol 12:403–407

    CAS  PubMed  Google Scholar 

  • Woltering D, Baumgartner B, Bagchi S, Larkin B, Loidl J, de los Santos T, Hollingsworth NM (2000) Meiotic segregation, synapsis, and recombination checkpoint functions re-quire physical interaction between the chromosomal proteins Red1p and Hop1p. Mol Cell Biol 20:6646–6658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woods LM, Hodges CA, Baart E, Baker SM, Liskay M, Hunt PA (1999) Chromosomal influence on meiotic spindle assembly: abnormal meiosis I in female Mlh1 mutant mice. J Cell Biol 145:1395–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu H, Gao J, Sharif WD, Davidson MK, Wahls WP (2004) Purification, folding, and characterization of Rec12 (Spo11) meiotic recombinase of fission yeast. Protein Expr Purif 38:136–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu TC, Lichten M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515–518

    CAS  PubMed  Google Scholar 

  • Wu TC, Lichten M (1995) Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics 140:55–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu L, Kleckner N (1995) Sequence non-specific double-strand breaks and interhomolog interactions prior to double-strand break formation at a meiotic recombination hot spot in yeast. EMBO J 14:5115–5128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu L, Weiner BM, Kleckner N (1997) Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev 11:106–118

    CAS  PubMed  Google Scholar 

  • Yamada T, Mizuno K, Hirota K, Kon N, Wahls WP, Hartsuiker E, Murofushi H, Shibata T, Ohta K (2004) Roles of histone acetylation and chromatin remodeling factor in a mei-otic recombination hotspot. EMBO J 23:1792–1803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita K, Shinohara M, Shinohara A (2004) Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks during meiosis. Proc Natl Acad Sci USA 101:11380–11385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang W (2000) Structure and function of mismatch repair proteins. Mutat Res 460:245–256

    CAS  PubMed  Google Scholar 

  • Yildiz O, Majumder S, Kramer B, Sekelsky JJ (2002) Drosophila MUS312 interacts with the nucleotide excision repair endonuclease MEI-9 to generate meiotic crossovers. Mol Cell 10:1503–1509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young JA, Hyppa RW, Smith GR (2004) Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts. Genetics 167:593–605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu L, Gaitatzes C, Neer E, Smith TF (2000) Thirty-plus functional families from a single motif. Protein Sci 9:2470–2476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zenvirth D, Arbel T, Sherman A, Goldway M, Klein S, Simchen G (1992) Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. EMBO J 11:3441–3447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zenvirth D, Loidl J, Klein S, Arbel A, Shemesh R, Simchen G (1997) Switching yeast from meiosis to mitosis: double-strand break repair, recombination and synaptonemal com-plex. Genes Cells 2:487–498

    CAS  PubMed  Google Scholar 

  • Zhao S, Renthal W, Lee EY (2002) Functional analysis of FHA and BRCT domains of NBS1 in chromatin association and DNA damage responses. Nucleic Acids Res 30:4815–4822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    CAS  PubMed  Google Scholar 

  • Zierhut C, Berlinger M, Rupp C, Shinohara A, Klein F (2004) Mnd1 is required for meiotic interhomolog repair. Curr Biol 14:752–762

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunter, N. (2007). Meiotic recombination. In: Aguilera, A., Rothstein, R. (eds) Molecular Genetics of Recombination. Topics in Current Genetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71021-9_14

Download citation

Publish with us

Policies and ethics