Skip to main content

A Proposal for Combining Formal Concept Analysis and Description Logics for Mining Relational Data

  • Conference paper
Formal Concept Analysis (ICFCA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4390))

Included in the following conference series:

Abstract

Recent advances in data and knowledge engineering have emphasized the need for formal concept analysis (fca) tools taking into account structured data. There are a few adaptations of the classical fca methodology for handling contexts holding on complex data formats, e.g. graph-based or relational data. In this paper, relational concept analysis (rca) is proposed, as an adaptation of fca for analyzing objects described both by binary and relational attributes. The rca process takes as input a collection of contexts and of inter-context relations, and yields a set of lattices, one per context, whose concepts are linked by relations. Moreover, a way of representing the concepts and relations extracted with rca is proposed in the framework of a description logic. The rca process has been implemented within the Galicia platform, offering new and efficient tools for knowledge and software engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baader, F., et al. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Baader, F., Sertkaya, B.: Applying formal concept analysis to description logics. In: Eklund, P.W. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 261–286. Springer, Heidelberg (2004)

    Google Scholar 

  3. Barbut, M., Monjardet, B.: Ordre et classification – Algèbre et combinatoire. Hachette, Paris (1970)

    MATH  Google Scholar 

  4. Cimiano, P., et al.: Conceptual Knowledge Processing with Formal Concept Analysis and Ontologies. In: Eklund, P.W. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 189–207. Springer, Heidelberg (2004)

    Google Scholar 

  5. Dao, M., et al.: Improving Generalization Level in UML Models: Iterative Cross Generalization in Practice. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 346–360. Springer, Heidelberg (2004)

    Google Scholar 

  6. Donini, F.M., et al.: The complexity of concept languages. Information and Computation 134(1), 1–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dzeroski, S., Lavrac, N. (eds.): Relational Data Mining. Springer, Berlin (2001)

    MATH  Google Scholar 

  8. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999)

    MATH  Google Scholar 

  9. Huchard, M., Roume, C., Valtchev, P.: When concepts point at other concepts: the case of UML diagram reconstruction. In: Duquenne, V., et al. (eds.) Proceedings of the Workshop on Formal Concept Analysis for Knowledge Discovery in Databases (FCAKDD at ECAI-02), pp. 32–43 (2002)

    Google Scholar 

  10. Kuznetsov, S.O.: Learning of simple conceptual graphs from positive and negative examples. In: Żytkow, J.M., Rauch, J. (eds.) Principles of Data Mining and Knowledge Discovery. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)

    Google Scholar 

  11. Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P.W. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg (2004)

    Google Scholar 

  12. Liquiere, M., Sallantin, J.: Structural Machine Learning with Galois Lattice and Graphs. In: Shavlik, J.W. (ed.) Proceedings of the Fifteenth International Conference on Machine Learning (ICML 1998), Madison, Wisconson, pp. 305–313. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  13. Prediger, S., Stumme, G.: Theory-driven logical scaling: conceptual information systems meet description logics. In: Franconi, E., Kifer, M. (eds.) Proceedings of the 6th International Workshop on Knowledge Representation meets Databases (KRDB’99), Linköping, Sweden (1999)

    Google Scholar 

  14. Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled context. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS, vol. 1640, pp. 401–414. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Priss, U.: Relational Concept Analysis: Semantic Structures in Dictionaries and Lexical Databases. PhD thesis, Aachen University (1996)

    Google Scholar 

  16. Quan, T.T., et al.: Automatic generation of ontology for scholarly semantic web. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 726–740. Springer, Heidelberg (2004)

    Google Scholar 

  17. Rudolph, S.: Exploring relational structures via fle. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 261–286. Springer, Heidelberg (2004)

    Google Scholar 

  18. Sowa, J.F. (ed.): Principles of Semantic Networks: Explorations in the Representation of Knowledge. Morgan Kaufmann Publishers, Inc., San Mateo (1991)

    MATH  Google Scholar 

  19. Stumme, G., Maedche, A.: FCA-MERGE: Bottom-up merging of ontologies. In: Proceedings of IJCAI’01, Seattle, WA, pp. 225–234 (2001)

    Google Scholar 

  20. Tilley, T., et al.: A survey of formal concept analysis support for software engineering activities. In: Proceedings of the First International Conference on Formal Concept Analysis, Darmstadt, Germany, Springer, Berlin (2003)

    Google Scholar 

  21. Valtchev, P., et al.: Galicia: an open platform for lattices. In: Sloot, P.M.A., et al. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 241–254. Springer, Heidelberg (2003)

    Google Scholar 

  22. Valtchev, P., Missaoui, R., Godin, R.: Formal concept analysis for knowledge discovery and data mining: The new challenges. In: Eklund, P.W. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 352–371. Springer, Heidelberg (2004)

    Google Scholar 

  23. Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards constructing galois (concept) lattices. Discrete Mathematics 256(3), 801–829 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wille, R.: Knowledge acquisition by methods of formal concept analysis. In: Proceedings of the conference on Data analysis, learning symbolic and numeric knowledge, pp. 365–380. Nova Science Publishers, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sergei O. Kuznetsov Stefan Schmidt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Rouane, M.H., Huchard, M., Napoli, A., Valtchev, P. (2007). A Proposal for Combining Formal Concept Analysis and Description Logics for Mining Relational Data. In: Kuznetsov, S.O., Schmidt, S. (eds) Formal Concept Analysis. ICFCA 2007. Lecture Notes in Computer Science(), vol 4390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70901-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70901-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70828-5

  • Online ISBN: 978-3-540-70901-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics