Skip to main content

A New Super-Resolution Algorithm Based on Areas Pixels and the Sampling Theorem of Papoulis

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

Abstract

In several application areas such as art, medicine, broadcasting and e-commerce, high-resolution images are needed. Super-resolution is the algorithmic process of increasing the resolution of an image given a set of displaced low-resolution, noisy and degraded images. In this paper, we present a new super-resolution algorithm based on the generalized sampling theorem of Papoulis and wavelet decomposition. Our algorithm uses an area-pixel model rather than a point-pixel model. The sampling theorem is used for merging a set of low-resolution images into a high-resolution image, and the wavelet decomposition is used for enhancing the image through efficient noise removing and high-frequency enhancement. The proposed algorithm is non-iterative and not time-consuming. We have tested our algorithm on multiple images and used the peak-to-noise ratio, the structural similarity index and the relative error as quality measures. The results show that our algorithm gives images of good quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, M.S., Bognar, J.G., Hardie, R.C., Yasuda, B.J.: Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames. IEEE Transactions on Instrumentation and Measurement 49, 915–923 (2000)

    Article  Google Scholar 

  2. Borman, S., Stevenson, R.: Spatial resolution enhancement of low-resolution image se-quences - a comprehensive review with directions for future research. Technical Report, University of Notre Dame (1998)

    Google Scholar 

  3. Bose, N.K., Lertrattanapanich, S., Koo, J.: Advances in superresolution using L-curve. In: Proceedings of the International Symposium on Circuits and Systems, vol. 2, pp. 433–436 (2001)

    Google Scholar 

  4. Chan, R.H., Chan, T.F., Shen, L., Shen, Z.: Wavelet algorithms for high-resolution image reconstruction. Society for Industrial and Applied Mathematics 24, 1408–1432 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Donoho, D.L., Raimondo, M.E.: A fast wavelet algorithm for image deblurring. ANZIAM Journal 46(E), C29–C49 (2005)

    MathSciNet  Google Scholar 

  7. El-Khamy, E S., Hadhoud, M. M., Dessouky, M. I., Salam, B. M., El-Samie, F. E. A.: Regularized super-resolution reconstruction of images using wavelet fusion. Optical Engineering 44(9), 097001.1–097001.10 (2005)

    Google Scholar 

  8. Irani, M., Peleg, S.: Super resolution from image sequences. In: Proceedings of the 10th International Conference on Pattern Recognition, vol. 2, pp. 115–120 (1990)

    Google Scholar 

  9. Jain, D.: Superresolution using Papoulis-Gerchberg algorithm. EE392J-Digital Video Processing, Stanford University, CA

    Google Scholar 

  10. Mateos, J., Molina, R., Katsaggelos, A.K.: Bayesian high resolution image reconstruction with incomplete multisensor low resolution systems. In: International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 705–708 (2003)

    Google Scholar 

  11. Messina, G., Battiato, S., Mancuso, M., Buemi, A.: Improving image resolution by adaptive back-projection correction techniques. IEEE Transactions on Consumer Electronics 48(3), 409–416 (2002)

    Article  Google Scholar 

  12. Neelamani, R., Choi, H., Baraniuk, R.: ForWaRD: Fourier-Wavelet Regularized Deconvo-lution for ill-conditioned systems. IEEE Transactions on Signal Processing 52(2), 418–433 (2004)

    Article  MathSciNet  Google Scholar 

  13. Nguyen, N., Milanfar, P.: An efficient wavelet-based algorithm for image superresolution. In: Proceedings of the International Conference on Image Processing, vol. 2, pp. 351–354 (2000)

    Google Scholar 

  14. Nguyen, N., Milanfar, P., Golub, G.: Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Transactions on Image Processing 10, 1299–1308 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Papoulis, A.: Generalized sampling theorem. IEEE Transactions on Circuits and Systems 24, 652–654 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  16. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine 20(3), 21–36 (2003)

    Article  Google Scholar 

  17. Temizel, A., Vlachos, T.: Wavelet domain image resolution enhancement using cycle-spinning. IEEE Electronics Letters 41, 119–121 (2005)

    Article  Google Scholar 

  18. Ur, H., Gross, D.: Improved resolution from subpixel shifted pictures. Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing 54(2), 181–186 (1992)

    Google Scholar 

  19. Vandewalle, P., Süsstrunk, S., Vetterli, M.: A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP Journal on Applied Signal Processing 10, 1–14 (2006)

    Article  Google Scholar 

  20. Welk, M., Theis, D., Brox, T., Weickert, J.: PDE-based deconvolution with forward-backward diffusivities and diffusion tensors. Scale-Space, 585–597 (2005)

    Google Scholar 

  21. Yoon, B.-J., Vaidyanathan, P.P.: Wavelet-based denoising by customized thresholding. In: Proceedings of the IEEE ICASS, vol. 2, pp. 925–928 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horé, A., Deschênes, F., Ziou, D. (2008). A New Super-Resolution Algorithm Based on Areas Pixels and the Sampling Theorem of Papoulis. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics