Skip to main content

Imprinting and Paternal Genome Elimination in Insects

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 25))

Abstract

In many insects and other arthropods, males transmit only maternally inherited chromosomes (White 1973; Brown and Chandra 1977; Nur 1980, 1990a,b,c; Bell 1982; Bull 1983; Lyon and Rastan 1984; Lyon 1993; Wrensch and Ebbert 1993; Brun et al. 1995; Borsa and Kjellberg 1996). This remarkable genetic asymmetry can result from any of three principal systems of paternal genome exclusion, each of which has evolved several times. The most familiar and widespread exclusion system is arrhenotoky, in which fatherless males develop from unfertilized eggs and therefore lack paternal chromosomes at all stages of development. Most arrhenotokous systems are genetically haplodiploid, but a few are based on other modes of inheritance (see Nur 1980, 1990c; Bell 1982; Suomalainen et al. 1987). In the two other kinds of exclusion systems, a male’s paternally inherited chromosomes are actively eliminated: males begin life as seemingly conventional diploid zygotes but then either (1) lose their paternal chromosomes during embryonic development, becoming true maternal haploids (embryonic elimination), or (2) exhibit dramatically non-Mendelian patterns of meiosis and spermiogenesis, such that mature sperm carry only maternal chromosomes (germline elimination). To denote their formal (transmission-genetic) similarity to haplodiploid arrhenotoky, the embryonic and germline elimination systems are often characterized as parahaplodiploid or pseudoarrhenotokous.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramczuk J, Sawicki W (1975) Pronuclear synthesis of DNA in fertilized and parthenogenetically activated mouse eggs. Exp Cell Res 92: 361–372

    Article  PubMed  CAS  Google Scholar 

  • Agulnik SI, Sabantsev ID, Ruvinsky AO (1993) Effect of sperm genotype on chromatid segregation in female mice heterozygous for aberrant chromosome 1. Genet Res 61: 97–100

    Article  PubMed  CAS  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New York

    Chapter  Google Scholar 

  • Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. University of California Press, Berkeley

    Google Scholar 

  • Berry RO (1941) Chromosome behavior in the germ cells and development of the gonads in Sciara ocellaris. J Morphol 68: 547–583

    Article  Google Scholar 

  • Blackman, RL (1987) Reproduction, cytogenetics and development. In: Minks AK, Harrewijn P (eds) World crop pests, 2a. Aphids: their biology, natural enemies and control, vol A. Elsevier, Amsterdam, pp 163–195

    Google Scholar 

  • Borsa P, Coustau C (1996) Single-stranded DNA conformation polymorphism at the Rdl locus in Hypothenemus hampei ( Coleoptera: Scolytidae). Heredity 76: 124–129

    Google Scholar 

  • Borsa P, Kjellberg F (1996) Experimental evidence for pseudo-arrhenotoky in Hypothenemus hampei ( Coleoptera: Scolytidae). Heredity 76: 130–135

    Google Scholar 

  • Brandriff BF, Segraves GR, Pinkel D (1991) The male-derived genome after sperm-egg fusion: spatial distribution of chromosomal DNA and paternal-maternal genomic association. Chromosoma 100: 262–266

    Article  PubMed  CAS  Google Scholar 

  • Breeuwer JAJ, Werren JH (1990) Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346: 558–560

    Article  PubMed  CAS  Google Scholar 

  • Brown SW (1963) The Comstockiella system of chromosome behavior in the armored scale insects (Coccoidea: Diaspididae). Chromosoma 14: 360–406

    Article  Google Scholar 

  • Brown SW (1964) Automatic frequency response in the evolution of male haploidy and other coccid chromosome systems. Genetics 49: 797–817

    PubMed  CAS  Google Scholar 

  • Brown SW (1965) Chromosomal survey of the armored and palm scale insects (Coccoidea: Diaspididae and Phoenicococcidae). Hilgardia 36: 189–294

    Google Scholar 

  • Brown SW (1977) Adaptive status and genetic regulation in major evolutionary changes of coccid chromosome systems. Nucleus 20: 145–57

    Google Scholar 

  • Brown SW, Chandra HS (1977) Chromosome imprinting and the differential regulation of homologous chromosomes. In: Goldstein L, Prescott DM (eds) Cell biology, a comprehensive treatise, vol I. Academic Press, New York, pp 135–189

    Google Scholar 

  • Brown SW, Cleveland C (1968) Meiosis in the male of Puto albicans ( Coccoidea-Homoptera ). Chromosoma 24: 210–232

    Google Scholar 

  • Brown SW, Nelson-Rees WA (1961) Radiation analysis of a lecanoid genetic system. Genetics 46: 983–1007

    PubMed  CAS  Google Scholar 

  • Brown SW, Wiegmann LI (1969) Cytogenetics of the mealybug Planococcus citri (Risso) (Homoptera: Coccoidea): genetic markers, lethals and chromosome rearrangements. Chromosoma 28: 255–279

    Article  Google Scholar 

  • Browning H, Strome S (1996) A sperm-supplied factor for embryogenesis in C. elegans. Development 122: 391–404

    PubMed  CAS  Google Scholar 

  • Brun LO, Borsa P, Gaudichon V, Stuart JJ, Aronstein K, Coustau C, and ffrench-Constant RH (1995) “Functional” haplodiploidy. Nature 374:506

    Google Scholar 

  • Bull JJ (1979) An advantage for the evolution of male haploidy and systems with similar genetic transmission. Heredity 43: 361–381

    Article  Google Scholar 

  • Bull JJ (1983) Evolution of sex determining mechanisms. Benjamin Cummings, Menlo Park Bull JJ, Charnov EL (1985) On irreversible evolution. Evolution 39: 1149–1155

    Google Scholar 

  • Carmona JA, Sanjur OI, Doadrio I, Machordom A, Vrijenhoek RC (1997) Hybridogenetic reproduction and maternal ancestry of polyploid Iberian fish: the Tropidophoxinellus alburnoides complex. Genetics 146: 983–993

    PubMed  CAS  Google Scholar 

  • Chandra HS, Brown SW (1975) Chromosome imprinting and the mammalian X chromosome. Nature 253: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Cimino MC (1972) Egg-production, polyploidization and evolution in a diploid all-female fish of the genus Poeciliopsis. Evolution 26: 294–306

    Article  Google Scholar 

  • Cole FR (1969) The flies of North America. University of California Press, Berkeley

    Google Scholar 

  • Cosmides LM, Tooby J (1981) Cytoplasmic inheritance and intragenomic conflict. J Theor Biol 89: 82–129

    Google Scholar 

  • Crouse HV (1960) The controlling element in sex chromosome behavior in Sciara. Genetics 45: 1429–1443

    PubMed  CAS  Google Scholar 

  • Crouse HV (1966) An inducible change in state on the chromosomes of Sciara: its effects on the genetic components of the X. Chromosoma 18: 230–253

    Article  Google Scholar 

  • Crouse HV (1979) X heterochromatin subdivision and cytogenetic analysis in Sciara coprophila (Diptera, Sciaridae). II. The controlling element. Chromosoma 74: 219–239

    Article  Google Scholar 

  • Davies DR (1974) Chromosome elimination in interspecific hybrids. Heredity 32: 267–270

    Article  Google Scholar 

  • Dawley RM, Bogart JP (eds) (1989) Evolution and ecology of unisexual vertebrates. Bulletin 466, New York State Museum, Albany

    Google Scholar 

  • Dempster E, Green MM, Nelson-Rees W, St Lawrence P (1978) Spencer Wharton Brown, 1918–1977. Genetics 88 (Suppl.): 137–138

    Google Scholar 

  • de Saint Phalle B, Sullivan W (1996) Incomplete sister chromatid separation is the mechanism of programmed chromosome elimination during early Sciara coprophila development. Development 122: 3775–3784

    Google Scholar 

  • Dobson S, Tanouye M (1996) The paternal sex ratio chromosome induces chromosome loss independently of Wolbachia in the wasp Nasonia vitripennis. Dev Genes Evol 206: 207–214

    Google Scholar 

  • Donahue RP (1972a) Cytogenetic analysis of the first cleavage division in mouse embryos. Proc Natl Acad Sci USA 69: 74–77

    Article  PubMed  CAS  Google Scholar 

  • Donahue RP (1972b) Fertilization of the mouse oocyte: sequence and timing of nuclear progression to the two-cell stage. J Exp Zool 180: 305–316

    Article  PubMed  CAS  Google Scholar 

  • Du Bois AM (1933) Chromosome behavior during cleavage in the eggs of Sciara coprophila (Diptera) in the relation to the problem of sex determination. Z Wiss Biol Abt B–Z Zellforsch Mikrosk Anat 19: 595–614

    Article  Google Scholar 

  • Formusoh ES, Hatchett JH, Black WC IV, Stuart JJ (1996) Sex-linked inheritance of virulence against wheat resistance gene H9 in the Hessian fly ( Diptera: Cecidomyiidae). Ann Entomol Soc Am 69: 428–434

    Google Scholar 

  • Fuge H (1994) Unorthodox male meiosis in Trichosia pubescens (Sciaridae): chromosome elimination involves polar organelle degeneration and monocentric spindles in first and second division. J Cell Sci 107: 299–312

    PubMed  Google Scholar 

  • Fuge H (1997) Nonrandom chromosome segregation in male meiosis of a sciarid fly: elimination of paternal chromosomes in first division is mediated by non-kinetochore microtubules. Cell Motil Cytoskel 36: 84–94

    Article  CAS  Google Scholar 

  • Gall JG (1996) A pictorial history: views of a cell. American Society for Cell Biology, Bethesda

    Google Scholar 

  • Gerbi SA (1986) Unusual chromosome movements in sciarid flies. In: Hennig W (ed) Results and problems in cell differentiation. Springer, Berlin Heidelberg New York, pp 71–104

    Google Scholar 

  • Godelle B, Rebold X (1995) Why are organelles uniparentally inherited? Proc R Soc Lond B 259: 27–33

    Article  Google Scholar 

  • Haig D (1993a) The evolution of unusual chromosome systems in coccoids: extraordinary sex ratios revisited. J Evol Biol 6: 69–77

    Article  Google Scholar 

  • Haig D (1993b) The evolution of unusual chromosome systems in sciarid flies: intragenomic conflict and the sex ratio. J Evol Biol 6: 249–261

    Article  Google Scholar 

  • Haig D (1994) Refusing the ovarian time bomb: three viewpoints and a reply. Trends Genet 10: 346–349

    PubMed  CAS  Google Scholar 

  • Haig D, Grafen A (1991) Genetic scrambling as a defense against meiotic drive. J Theor Biol 153: 531–558

    Article  PubMed  CAS  Google Scholar 

  • Haig D, Trivers R (1995) The evolution of parental imprinting: a review of hypotheses. In: Ohlsson R, Hall K, Ritzen M (eds) Genomic imprinting, causes and consequences. Cambridge University Press, Cambridge, pp 17–28

    Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156: 477–488

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD (1979) Wingless and fighting males in fig wasps and other insects. In: Blum MS, Blum NA (eds) Sexual selection and reproductive competition in insects. Academic Press, New York, pp 167–220

    Google Scholar 

  • Hartl DL, Brown SW (1970) The origin of male haploid genetic systems and their expected sex ratio. Theor Popul Biol 1: 165–190

    Article  PubMed  CAS  Google Scholar 

  • Hayman DL, Rofe RH (1977) Marsupial sex chromosomes. In: Calaby JH, Tyndale-Biscoe CH (eds) Reproduction and evolution. Australian Academy of Sciences, Canberra, pp 69–79

    Google Scholar 

  • Heard E, Philippe C, Avner P (1997) X-chromosome inactivation in mammals. Annu Rev Genet 31: 571–610

    Article  PubMed  CAS  Google Scholar 

  • Herrera JA, Lopez-Leon MD, Cabrero J, Shaw MW, Camacho JPM (1996) Evidence for B chromosome drive suppression in the grasshopper Eyprepocnemis plorans. Heredity 76: 633639

    Google Scholar 

  • Heslop-Harrison JS (1990) Gene expression and parental dominance in hybrid plants. Development Suppl. 1990: 21–28

    Google Scholar 

  • Howlett SK, Bolton VN (1985) Sequence and regulation of morphological molecular events during the first cell cycle of mouse embryogenesis. J Embryol Exp Morphol 87: 175–206

    PubMed  CAS  Google Scholar 

  • Huettner A (1924) Maturation and fertilization in Drosophila melanogaster. J Morphol 39: 249–265

    Article  Google Scholar 

  • Hughes-Schrader S (1948) Cytology of coccids. Adv Genet 2: 127–203

    Article  Google Scholar 

  • Hughes-Schrader S, Ris H (1941) The diffuse spindle attachment of coccids, verified by the mitotic behavior of induced chromosome fragments. J Exp Zool 87: 429–456

    Article  Google Scholar 

  • Hurst GDD, Hurst LD, Majerus MEN (1997) Cytoplasmic sex-ratio distorters. In: O’Neill SL, Hoffman AA, Werren JH (eds) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford, pp 125–154

    Google Scholar 

  • Hurst LD (1991) The evolution of intra-populational cytoplasmic incompatibility, or when spite can be successful. J Theor Biol 148: 269–277

    Article  PubMed  CAS  Google Scholar 

  • Kaneda H, Hayashi J, Takahama S, Taya C, Lindahl KF, Yonekawa H (1995) Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci USA 92: 4542–4546

    Article  PubMed  CAS  Google Scholar 

  • Karr TL (1996) Paternal investment and intracellular sperm-egg interactions during and following fertilzation in Drosophila. Curr Top Dev Biol 34: 89–115

    Article  PubMed  CAS  Google Scholar 

  • Kirkendall LR (1993) Ecology and evolution of biased sex ratios in bark and ambrosia beetles. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratio in insects and mites. Chapman and Hall, New York, pp 235–345

    Chapter  Google Scholar 

  • Kitchin RM (1970) A radiation analysis of a Comstockiella chromosome system: destruction of heterochromatic chromosomes during spermatogenesis in Parlatoria oleae (Coccoidea: Diaspididae). Chromosoma 31: 165–197

    Article  PubMed  CAS  Google Scholar 

  • Kitchin RM (1975) Intranuclear destruction of heterochromatin in two species of armored scale insects. Genetica 45: 227–235

    Article  Google Scholar 

  • Kosztarab M, Kozâr F (1988) Scale insects of Central Europe. Junk, Dordrecht

    Google Scholar 

  • Lassy CW, Karr TL (1996) Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans. Mech Dev 57: 47–58

    Article  PubMed  CAS  Google Scholar 

  • Latham KE, McGrath J, Solter D (1995) Mechanistic and developmental aspects of genetic imprinting in mammals. Int Rev Cytol 160: 53–98

    Article  PubMed  CAS  Google Scholar 

  • Lee JT, Jaenisch R (1997) The (epi)genetic control of mammalian X-chromosome inactivation. Curr Opin Genet Dev 7: 274–280

    Article  PubMed  CAS  Google Scholar 

  • Leitch AR, Schwaracher T, Mosgoller W, Bennett MD, Heslop-Harrison JS (1991) Parental genomes are separated throughout the cell cycle in a plant hybrid. Chromosoma 101: 206–213

    Article  CAS  Google Scholar 

  • Lyon MF (1993) Epigenetic inheritance in mammals. Trends Genet 9: 123–128

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF, Rastan S (1984) Parental source of chromosome imprinting and its relevance for X chromosome inactivation. Differentiation 26: 63–67

    Article  PubMed  CAS  Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade: analysis of phylogeny and character evolution, Version 3. Sinauer, Sunderland

    Google Scholar 

  • Mantovani B, Scali V (1992) Hybridogenesis and androgenesis in the stick-insect Bacillus rossiusgrandii benazzii ( Insecta, Phasmatodea). Evolution 46: 783–796

    Google Scholar 

  • Metz CW (1925) Chromosomes and sex in Sciara. Science 61: 212–215

    Article  PubMed  CAS  Google Scholar 

  • Metz CW (1938) Chromosome behavior, inheritance and sex determination in Sciara. Am Nat 72: 485–520

    Article  Google Scholar 

  • Meusel MS, Mortiz RFA (1993) Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs. Curr Genet 24: 539–543

    Article  PubMed  CAS  Google Scholar 

  • Miller DR (1990) Phylogeny. In: Rosen D (ed) World crop pests, 4a. Armored scale insects: their biology, natural enemies and control, vol A. Elsevier, Amsterdam, pp 169–178

    Google Scholar 

  • Moore T (1994) Refusing the ovarian time bomb: three viewpoints and a reply. Trends Genet 10: 346–349

    Article  Google Scholar 

  • Moran NA, Baumann P (1994) Phylogenetics of cytoplasmically inherited microorganisms of arthropods. Trends Ecol Evol 9: 15–20

    Article  PubMed  CAS  Google Scholar 

  • Nelson-Rees WA (1962) The effects of radiation damaged heterochromatic chromosomes on male fertility in the mealybug, Planococcus citri (Risso). Genetics 47: 661–683

    PubMed  CAS  Google Scholar 

  • Nelson-Rees WA, Hoy MA, Roush RT (1980) Heterochromatinization, chromatin elimination and haploidization in the parahaploid mite Metaseiulus occidentalis (Nesbitt) ( Acarina: Phytoseiidae). Chromosoma 77: 263–276

    Google Scholar 

  • Norton RA, Kethley JB, Johnston DE, O’Connor BM (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratio in insects and mites. Chapman and Hall, New York, pp 8–99

    Chapter  Google Scholar 

  • Nur U (1962) A supernumerary chromosome with an accumulation mechanism in the lecanoid genetic system. Chromosoma 13: 249–271

    Article  Google Scholar 

  • Nur U (1963) Meiotic parthenogenesis and heterochromatization in a soft scale, Pulvinaria hydrangeae (Coccoidea: Homoptera). Chromosoma 14: 123–139

    Article  Google Scholar 

  • Nur U (1965) A modified Comstockiella chromosome system in the olive scale insect, Parlatoria oleae (Coccoidea: Diaspididae). Chromosoma 17: 104–120

    Article  PubMed  CAS  Google Scholar 

  • Nur U (1967) Reversal of heterochromatization and the activity of the paternal chromosome set in the male mealy bug. Genetics 56: 375–389

    PubMed  CAS  Google Scholar 

  • Nur U (1970) Translocations between eu-and heterochromatic chromosomes, and spermatocytes lacking a heterochromatic set in male mealy bugs. Chromosoma 29: 42–61

    Article  PubMed  CAS  Google Scholar 

  • Nur U (1980) Evolution of unusual chromosome systems in scale insects (Coccoidea: Homoptera). In: Blackman RL, Hewitt GM, Ashburner M (eds) Insect cytogenetics. Blackwell, Oxford, pp 97–117

    Google Scholar 

  • Nur U (1990a) Chromosomes, sex-ratios, and sex determination. In: Rosen D (ed) World crop pests, 4a. Armored scale insects: their biology, natural enemies and control, vol A. Elsevier, Amsterdam, pp 179–190

    Google Scholar 

  • Nur U (1990b) Heterochromatization and euchromatization of whole genomes in scale insects (Coccoidea: Homoptera). Development Suppl 1990: 29–34

    Google Scholar 

  • Nur U (1990c) Parthenogenesis. In: Rosen D (ed) World crop pests, 4a. Armored scale insects: their biology, natural enemies and control, vol A. Elsevier, Amsterdam, pp 191–197

    Google Scholar 

  • Nur U, Brett BLH (1988) Genotypes affecting the condensation and transmission of hetero-chromatic B chromosomes in the mealybug Pseudococcus affinis. Chromosoma 96: 205–212

    Article  Google Scholar 

  • Nur U, Werren JH, Eickbush DG, Burke WD, Eickbush TH (1988) A “selfish” B chromosome that enhances its transmission by eliminating the paternal genome. Science 240: 512–514

    Article  PubMed  CAS  Google Scholar 

  • Odartchenko N, Keneklis T (1973) Localization of paternal DNA in interphase nuclei of mouse eggs during early cleavage. Nature 241: 528–529

    Article  PubMed  CAS  Google Scholar 

  • O’Neill SL, Giordano R, Colbert AME, Karr TL, Robertson HM (1992) 16S RNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 89: 2699–2702

    Google Scholar 

  • O’Neill SL, Hoffmann AA, Werren JH (eds) (1997) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, Oxford

    Google Scholar 

  • Pitnick S, Karr TL (1998) Paternal products and by-products in Drosophila development. Proc R Soc Lond B Biol Sci 265: 821–826

    Article  CAS  Google Scholar 

  • Quattro JM, Avise JC, Vrijenhoek RC (1991) Molecular evidence for multiple origins of hybridogenetic fish clones (Poeciliidae: Poeciliopsis). Genetics 127: 391–398

    PubMed  CAS  Google Scholar 

  • Reed KM (1993) Cytological analysis of the paternal sex ratio chromosome of Nasonia vitripennis. Genome 36: 157–161

    Article  PubMed  CAS  Google Scholar 

  • Reed KM, Beukeboom LW, Eickbush DG, Werren JH (1994) Junctions between repetitive DNAs on the PSR chromosome of Nasonia vitripennis - association of palindromes with recombination. J Mol Evol 38: 352–362

    Article  PubMed  CAS  Google Scholar 

  • Reed KM, Werren JH (1995) Induction of paternal genome loss by the paternal sex ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia) - a comparative study of early embryonic events. Mol Reprod Dev 40: 408–418

    Article  PubMed  CAS  Google Scholar 

  • Rieffel SAM, Crouse HV (1966) The elimination and differentiation of chromosomes in the germ line of Sciara. Chromosoma 19: 231–276

    Article  PubMed  CAS  Google Scholar 

  • Robison WG Jr (1990) Sperm ultrastructure, behavior, and evolution. In: Rosen D (ed) World crop pests, 4a. Armored scale insects: their biology, natural enemies and control, vol A. Elsevier, Amsterdam, pp 205–220

    Google Scholar 

  • Rousset F, Bouchon D, Pintureau B, Juchault P, Solignac M (1992) Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc R Soc Lond B 250: 91–98

    Google Scholar 

  • Ryan SL, Saul GB, Conner GW (1985) Aberrant segregation of R-locus genes in male progeny from incompatible crosses in Mormoniella. J Hered 76: 21–26

    PubMed  CAS  Google Scholar 

  • Sabelis MW, Nagelkerke K (1993) Sex allocation and pseudoarrhenotoky in phytoseiid mites. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratio in insects and mites. Chapman and Hall, New York, pp 512–541

    Chapter  Google Scholar 

  • Sabour M (1972) RNA synthesis and heterochromatization in early development of a mealybug. Genetics 70: 291–298

    PubMed  CAS  Google Scholar 

  • Sathananthan AH (1997) Mitosis in the human embryo: the vital role of the sperm centrosome (centriole). Histol Histopathol 12: 827–856

    PubMed  CAS  Google Scholar 

  • Schatten G (1994) The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev Biol 165: 299–335

    Article  PubMed  CAS  Google Scholar 

  • Schilthuizen M, Stouthamer R (1997) Horizontal transmission of parthenogenesis-inducing microbes in Trichogramma wasps. Proc R Soc Lond B 264: 361–366

    Article  CAS  Google Scholar 

  • Schrader F (1923) A study of the chromosomes in three species of Pseudococcus. Arch Zellforsch 17: 45–62

    Google Scholar 

  • Schulten GGM (1985) Pseudo-arrhenotoky. In: Helle W, Sabelis MW (eds) World crop pests, 1B. Spider mites: their biology, natural enemies and control, vol 1B. Elsevier, Amsterdam, pp 67–71

    Google Scholar 

  • Schultz RJ (1969) Hybridization, unisexuality and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am Nat 103: 605–619

    Article  Google Scholar 

  • Schultz RJ (1977) Evolution and ecology of unisexual fishes. In: Heckt MK, Steere WC, Wallace B (eds) Evolutionary biology. Plenum Press, New York, pp 277–331

    Chapter  Google Scholar 

  • Schultz RJ (1989) Origins and relationships of unisexual poeciliids. In: Meffe MK, Snelson FF (eds) Ecology and evolution of livebearing fishes (Poeciliidae). Prentice Hall, Englewood Cliffs, New Jersey, pp 69–87

    Google Scholar 

  • Smith-Stocking H (1936) Genetic studies on selective segregation of chromosomes in Sciara coprophila Lintner. Genetics 21: 421–443

    PubMed  CAS  Google Scholar 

  • Solter D (1994) Refusing the ovarian time bomb: three viewpoints and a reply. Trends Genet 10: 346–349

    Article  PubMed  CAS  Google Scholar 

  • Stuart JJ, Hatchett JH (1988) Cytogenetics of the Hessian fly: II. Inheritance and behavior of somatic and germline-limited chromosomes. J Hered 79: 190–199

    Google Scholar 

  • Suomalainen E, Saura A, Lokki J (1987) Cytology and evolution in parthenogenesis. CRC Press, Boca Raton

    Google Scholar 

  • Surani MAH (1986) Evidences and consequences of differences between maternal and paternal genomes during embryogenesis in the mouse. In: Rossant J, Pedersen RA (eds) Experimental approaches to mammalian embryonic development. Cambridge University Press, Cambridge, pp 401–435

    Google Scholar 

  • Tinti F, Scali V (1992) Genome exclusion and gametic DAPI-DNA content in the hybridogenetic Bacillus rossius-grandii benazzii complex ( Insecta Phasmatodea ). Mol Reprod Dev 33: 235–242

    Google Scholar 

  • Tinti F, Scali V (1993) Chromosomal evidence of hemiclonal and all-paternal offspring production in Bacillus rossius-grandii benazzii ( Insecta Phasmatodea ). Chromosoma 102: 403–414

    Google Scholar 

  • Tinti F, Scali V (1995) Allozymic and cytological evidence for hemiclonal, all-paternal, and mosaic offspring of the hybridogenetic stick insect Bacillus rossius-grandii grandii. J Exp Zool 273: 149–159

    Article  Google Scholar 

  • Treat AE (1965) Sex-distinctive chromatin and the frequency of males in the moth ear mite. J NY Entomol Soc 73: 12–18

    Google Scholar 

  • Varmuza S, Mann M (1994a) Genomic imprinting–defusing the ovarian time bomb. Trends Genet 10: 118–123

    Article  PubMed  CAS  Google Scholar 

  • Varmuza S, Mann M (1994b) Refusing the ovarian time bomb: three viewpoints and a reply. Trends Genet 10: 346–349

    Article  Google Scholar 

  • Werren JH (1991) The paternal-sex-ratio chromosome of Nasonia. Am Nat 137: 392–402

    Article  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42: 587–609

    Article  PubMed  CAS  Google Scholar 

  • Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc Lond B 261: 55–71

    Article  CAS  Google Scholar 

  • White MDJ (1973) Animal cytology and evolution, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • White MJD (1978) Modes of speciation. Freeman, San Francisco

    Google Scholar 

  • Whiting PW (1945) The evolution of male haploidy. Q Rev Biol 20: 231–260

    Article  PubMed  CAS  Google Scholar 

  • Wilson EB (1928) The cell in development and heredity, 3rd edn. Macmillan, New York Wrensch DL, Ebbert MA (eds) ( 1993 ) Evolution and diversity of sex ratio in insects and mites. Chapman and Hall, New York

    Google Scholar 

  • Wright SJ, Longo FJ (1988) Sperm nuclear enlargement in fertilized hamster eggs is related to meiotic maturation of the maternal chromatin. J Exp Zool 247: 155–165

    Article  PubMed  CAS  Google Scholar 

  • Yasuda GK, Schubiger G, Wakimoto BT (1995) Genetic characterization of ms(3)K81, a paternal effect gene of Drosophila melanogaster. Genetics 140: 219–229

    PubMed  CAS  Google Scholar 

  • Zissler D (1992) From egg to pole cell: ultrastructural aspects of early cleavage and germ cell determination in insects. Microsc Res Tech 22: 49–74

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herrick, G., Seger, J. (1999). Imprinting and Paternal Genome Elimination in Insects. In: Ohlsson, R. (eds) Genomic Imprinting. Results and Problems in Cell Differentiation, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69111-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69111-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21956-0

  • Online ISBN: 978-3-540-69111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics