Skip to main content

Tactile Illusion Caused by Tangential Skin Strain and Analysis in Terms of Skin Deformation

  • Conference paper
Haptics: Perception, Devices and Scenarios (EuroHaptics 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5024))

Abstract

We describe a new tactile illusion of surface geometry that can be easily produced with simple materials. When the fingertip skin is strained by loading it in traction along a narrow band surrounded by two fixed traction surfaces, the sensation of a raised surface is typically experienced. This and other analogous cases are discussed in terms of tissue deformation created at a short distance inside the skin where the target mechanoreceptors are presumably located. A finite element analysis allowed us to propose that the basis of this illusion is connected with the observation that normal loading and tangential loading can create similar strain distribution, thereby creating an instance of an ambiguous stimulus. In the discussion we relate this stimulus to several other ambiguous tactile stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hollins, M., Bensmaia, S., Karlof, K., Young, F.: Individual differences in perceptual space for tactile textures: Evidence from multidimensional scaling. Perception & Psychophysics 62, 1534–1544 (2000)

    Google Scholar 

  2. Bergmann-Tiest, W., Kappers, A.: Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Psychologica 12, 1–20 (2006)

    Article  Google Scholar 

  3. LaMotte, R.H., Whitehouse, J.: Tactile detection of a dot on a smooth surface: peripheral neural events. Journal of Neurophysiology 56, 1109–1128 (1986)

    Google Scholar 

  4. Louw, S., Kappers, A.M.L.: Haptic detection of gaussian profiles over the whole range of spatial scales. Experimental Brain Research 132, 369–374 (2000)

    Article  Google Scholar 

  5. Nakatani, M., Howe, R.D., Tachi, S.: The fishbone tactile illusion. EuroHaptics, 69–73 (2006)

    Google Scholar 

  6. OyarzĂ¡bal, M., Nakatani, M., Howe, R.D.: Vibration enhances geometry perception with tactile shape displays. WorldHaptics, 44–49 (2007)

    Google Scholar 

  7. Wang, Q., Hayward, V.: Tactile synthesis and perceptual inverse problems seen from the view point of contact mechanics. ACM Transactions on Applied Perception (in press, 2008)

    Google Scholar 

  8. Wang, Q., Hayward, V.: Compact, portable, modular, high-performance, distributed tactile transducer device based on lateral skin deformation. In: 14th Symposium on Haptic Interfaces For Virtual Environment And Teleoperator Systems (2006)

    Google Scholar 

  9. Levesque, J.V., Pasquero, J., Hayward, V., Legault, M.: Display of virtual braille dots by lateral skin deformation: feasibility study. ACM Trans. App. Percept. 2, 132–149 (2005)

    Article  Google Scholar 

  10. Hayward, V.: A brief taxonomy of tactile illusions and demonstrations that can be done in a hardware store. Brain Research Bulletin 75, 742–752 (in press, 2008)

    Article  Google Scholar 

  11. Phillips, J., Johnson, K.: Tactile spatial resolution. ii. neural representation of bars, edges, and gratings in monkey primary afferents. J. Neurophysiol. 46, 1192–1203 (1981)

    Google Scholar 

  12. Goodwin, A.H., Wheat, H.E.: Effects of nonuniform fiber sensitivity, innervation geometry, and noise on information relayed by a population of slowly adapting type i primary afferents from the fingerpad. J. Neurosci. 19, 8057–8070 (1999)

    Google Scholar 

  13. Srinivasan, M.A., Dandekar, K.: An investigation of the mechanics of tactile sense using two-dimensional models of the primate fingertip. J. Biomech. Eng. 118, 48–55 (1996)

    Article  Google Scholar 

  14. Maeno, T., Kobayashi, K.: FE analysis of the dynamic characteristics of the human finger pad in contact with objects with/without surface roughness. ASME Int. Mech. Eng. Congr. Expo, 279–286 (1998)

    Google Scholar 

  15. Tada, M., Nagai, N., Yoshida, H., Maeno, T.: Iterative FE analysis for non-invasive material modeling of a fingertip with layerd structure. In: EuroHaptics, pp. 187–194 (2006)

    Google Scholar 

  16. Iggo, A., Muir, A.: The structure and function of a slowly adapting touch corpuscle in hairy skin. J. Physiol. 200, 763–796 (1969)

    Google Scholar 

  17. Beer Jr., F.P., J., E.R., Dewolf, J.T.: Mechanics of Materials, 4th edn. McGraw Hill, New York (2006)

    Google Scholar 

  18. Kikuuwe, R., Sano, A., Mochiyama, H., Takasue, N., Fujimoto, H.: Enhancing haptic detection of surface undulation. ACM Trans. App. Percept. 2, 46–67 (2005)

    Article  Google Scholar 

  19. Rossi, D.D., Caiti, A., Bianchi, R., Canepa, G.: Fine-form tactile discrimination through inversion of data from a skin-like sensor. In: Proc. of the IEEE International Conference on Robotics ans Automation, pp. 398–403 (1991)

    Google Scholar 

  20. Ricker, S.L., Ellis, R.E.: 2-D Finite-element models of tactile sensors. In: Proc. of the IEEE International Conference on Robotics and Automation, pp. 941–947 (1993)

    Google Scholar 

  21. Ferrier, N., Brockett, R.: Reconstructing the shape of a deformable membrane from image data. Int. Journal of Robotics Research 19, 795–816 (2000)

    Article  Google Scholar 

  22. Vlack, K., Mizota, T., Kawakami, N., Kamiyama, K., Kajimoto, H., Tachi, S.: GelForce: a vision-based traction field computer interface. In: CHI Extended Abstracts, pp. 1154–1155 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel Ferre

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakatani, M., Sato, A., Tachi, S., Hayward, V. (2008). Tactile Illusion Caused by Tangential Skin Strain and Analysis in Terms of Skin Deformation. In: Ferre, M. (eds) Haptics: Perception, Devices and Scenarios. EuroHaptics 2008. Lecture Notes in Computer Science, vol 5024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69057-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69057-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69056-6

  • Online ISBN: 978-3-540-69057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics