Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 63))

One of the newest applications for over-expressed proteins in plants, including corn, is as a bio-factory for the production of vaccines, pharmaceuticals and industrial enzymes (Howard and Hood 2005). For these applications, many of the basic molecular and cellular techniques that are useful to study input traits can be applied to boost protein accumulation for the most cost-effective production model. This chapter focuses on this bio-factory application of proteins in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beach L, Tarczynski MC (2000) Methods of increasing accumulation of essential amino acids in seeds. US Patent 6,127,600, 3 October 2000

    Google Scholar 

  • Beach L, Orman B, Townsend J, Thomas L (1998) Reduction of endogenous seed protein levels in plants. US Patent 5,850,024, 15 December 1998

    Google Scholar 

  • Bednarek SY, Raikhel NV (1992) Intracellular trafficking of secretory proteins. Plant Mol Biol 20:133–150

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Chua N-H (1990 ) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 16:959–966

    Article  Google Scholar 

  • Biswas GCG, Ransoma C, Sticklen M (2006) Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Sci 171:617–623

    Article  CAS  Google Scholar 

  • Buchner J (2002) Introduction: the cellular protein folding machinery. Cell Mol Life Sci 59:1587– 1588

    Article  PubMed  CAS  Google Scholar 

  • Caimi PG, McCole LM, Klein TM, Kerr PS (1996) Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a Bacillus amyloliquefaciens SacB gene. Plant Physiol 110:355–363

    PubMed  CAS  Google Scholar 

  • Chikwamba R, Cunnick J, Hathaway D, McMurray J, Mason H, Wang K (2002) A functional antigen in a practical crop: LT-B producing maize protects mice against Escherichia coli heat labile enterotoxin (LT) and cholera toxin (CT). Transgenic Res 11:479–493

    Article  PubMed  CAS  Google Scholar 

  • Clough RC, Pappu K, Thompson K, Beifuss K, Lane J, Delaney DE, Harkey R, Drees C, Howard JA, Hood EE (2006) Manganese peroxidase from the white-rot fungus Phanerochaete chrysosporium is enzymatically active and accumulates to high levels in transgenic maize seed. Plant Biotechnol J 4:53–62

    Article  PubMed  CAS  Google Scholar 

  • Cordero MJ, Ravento's D, San Segundo B (1994) Expression of a maize proteinase inhibitor gene is induced in response to wounding and fungal infection: systemic wound-response of a monocot gene. Plant J 6:141–150

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  PubMed  CAS  Google Scholar 

  • Delaney D, Jilka J, Barker D, Irwin P, Poage M, Woodard S, Horn M, Vinas A, Beifuss K, Barker M, Wiggins B, Drees C, Harkey R, Nikolov Z, Hood E, Howard J (2003) Production of aprotinin in transgenic maize seeds for the pharmaceutical and cell culture markets. In: Vasil IK (ed) Proc 10th IAPTC&B Congress. Kluwer, Dordrecht, pp 393–394

    Google Scholar 

  • Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol 24:426–432

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Twyman RM, Schillberg S (2003) Production of antibodies in plants and their use for global health. Vaccine 21:820–825

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of bio-pharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  PubMed  CAS  Google Scholar 

  • Gu Z, Glatz CE (2007) Recovery of recombinant dog gastric lipase from corn endosperm extract separation. Sci Technol 42:1195–1213

    CAS  Google Scholar 

  • Halim AH, Mitchell HL, Wassom CE (1973) Trypsin inhibitors of corn (Zea mays). Trans Kans Acad Sci 76:289–293

    Article  PubMed  CAS  Google Scholar 

  • Hood E (2004) Bioindustrial and biopharmaceutical products from plants: In Proceedings of the 4th international crop science congress: new directions for a diverse planet, Brisbane. www.cropscience.org.au

  • Hood EE, Woodard S (2002) Industrial proteins produced from plants. In: Hood EE and Howard JA (eds) Plants as factories for protein production. Kluwer, Dordrecht, pp 119– 135

    Google Scholar 

  • Hood EE, Woodard SL (2005) Commercialization of a protein product from transgenic maize. Natl Agric Biotechnol Council 17:147–157

    Google Scholar 

  • Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey MR, Flynn P, Register J, Marshall L, Bond D, Kulisek E, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh RJ, Hernan R, Kappel WK, Ritland D, Li C-P, Howard JA (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3(4):291–306

    Article  CAS  Google Scholar 

  • Hood EE, Howard JA, Delaney DE (2002a) Method of increasing heterologous protein expression in plants. US Patent application 10/252732

    Google Scholar 

  • Hood EE, Woodard SL, Horn ME (2002b) Monoclonal antibody manufacturing in transgenic plants - myths and realities. Curr Opin Biotechnol 13:630–635

    Article  CAS  Google Scholar 

  • Hood EE, Bailey MR, Beifuss K, Magallanes-Lundback M, Horn ME, Callaway E, Drees C, Delaney DE, Clough R, Howard JA (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1:129–140

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Love R, Lane J, Bray J, Clough R, Pappu K, Drees C, Hood KR, Yoon S, Ahmad A, Howard JA (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5(6):709– 719

    Article  PubMed  CAS  Google Scholar 

  • Horn ME (2002) Expression of an SIV protein in transgenic maize for use as an edible vaccine and reagent supply. In: McElrath MJ, et al. (eds) Proc Keystone Symp, HIV-1 protection and control by vaccination (X8), 5–11 April, Colorado

    Google Scholar 

  • Horn ME, Woodard SL, Howard JA (2004) Plant molecular farming: systems and products. Plant Cell Rep 22:711–720

    Article  PubMed  CAS  Google Scholar 

  • Howard JA, Donnelly KC (2004) A quantitative safety assessment model for transgenic protein products produced in agricultural crops. J Agric Environ Ethics 17:545–558

    Article  Google Scholar 

  • Howard JA, Hood EE (2005) Bioindustrial and biopharmaceutical products produced in plants. In: Sparks D (ed) Advances in agronomy, vol 85. Academic, San Diego, pp 91– 124

    Google Scholar 

  • Howard JA, Hood EE (2007) Methods for growing nonfood products in transgenic plants. Crop Sci 47:1255–1262

    Google Scholar 

  • Jepson I, Martinez A, Sweetman JP (1999) Chemical-inducible gene expression systems for plants - a review. Pesticide Sci 54:360–367

    Article  Google Scholar 

  • Király O, Guan L, Szepessy E, Tóth M, Kukor Z, Sahin-Tóth M (2006) Expression of human cationic trypsinogen with an authentic N terminus using intein-mediated splicing in aminopeptidase P (pepP) deficient Escherichia coli. Protein Expr Purif 48:104–111

    Article  PubMed  Google Scholar 

  • Kusnadi AR, Evangelista RL, Hood EE, Howard JA, Nikolov ZL (1998a) Processing of transgenic corn seed and its effect on the recovery of recombinant beta-glucuronidase. Biotechnol Bioeng 60:44–52

    Article  CAS  Google Scholar 

  • Kusnadi AR, Hood EE, Witcher DR, Howard JA, Nikolov ZL (1998b) Production and purification of two recombinant proteins from transgenic corn. Biotechnol Prog 14:149– 155

    Article  CAS  Google Scholar 

  • Lamphear BJ, Streatfield SJ, Jilka JM, Brooks CA, Barker DK, Turner DD, Delaney DE, Garcia M, Wiggins B, Woodard SL, Hood EE, Tizard IR, Lawhorn B, Howard JA (2002) Delivery of subunit vaccines in maize seed. J Control Release 85:169–180

    Article  PubMed  CAS  Google Scholar 

  • Lamphear BJ, Barker DK, Brooks CA, Delaney DE, Lane JR, Beifuss K, Love R, Thompson K, Mayor J, Clough R, Harkey R, Poage M, Drees C, Horn ME, Streatfield SJ, Nikolov Z, Woodard SL, Hood EE, Jilka JM, Howard JA (2005) Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. Plant Biotechnol J 3:103– 114

    Article  PubMed  CAS  Google Scholar 

  • Ludwig DL, Witte L, Hicklin DJ, Prewett M, Bassi R, Burtrum D, Pereira DS, Jimenez X, Fox F, Saxena B, Zhou Q, Ma Y, Kang X, Patel D, Barry M, Kussie P, Zhu Z, Russell DA, Petersen WL, Jury TP, Gaitan-Gaitan F, Moran DL, Delannay X, Storrs BS, Tou J, Zupec ME, Gustafson KS, McIntyre J, Tarnowski SJ, Bohlen P (2004) Conservation of receptor antagonist anti-tumor activity by epidermal growth factor receptor antibody expressed in transgenic corn seed. Human Antibodies 13:81–90

    PubMed  CAS  Google Scholar 

  • Ma JK, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599

    Article  PubMed  CAS  Google Scholar 

  • Marrs KA, Casey ES, Capitant SA, Bouchard RA, Dietrich PS, Mettler IJ, Sinibaldi RM (1993) Characterization of two maize HSP90 heat shock protein genes: expression during heat shock, embryogenesis, and pollen development. Dev Genet 14:27–41

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka M, Tada Y, Fujimura T, Kano-Murakami Y (1993) Tissue-specific light-regulated expression directed by the promoter of a C4 gene, maize pyruvate, orthophosphate dikinase, in a C3 plant, rice. Proc Natl Acad Sci USA 90:9586–9590

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Matzke A (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107:679–685

    PubMed  CAS  Google Scholar 

  • Miles S, Arellano S, Krebs H, Nelson A, Batie C, Betts S (2007) Requirement of an ER-directed signal peptide for accumulation of active Trichoderma reesei cellobiohydrolase I in transgenic corn seed. In: Proc Plant Molecular Biology Retreat, 28–30 Sept. ASPB, Chicago

    Google Scholar 

  • Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60

    Article  PubMed  CAS  Google Scholar 

  • Rayon C, Lerouge P, Faye L (1998) The protein N-glycosylation in plants. J Exp Bot 49:1463– 1472

    Article  CAS  Google Scholar 

  • Russell DA, Fromm ME (1997) Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice. Transgenic Res 6:157–168

    Article  PubMed  CAS  Google Scholar 

  • Samyn-Petit B, Gruber V, Flahaut C, Wajda-Dubos JP, Farrer S, Pons A, Desmaizieres G, Slomianny MC, Theisen M, Delannoy P (2001) N-glycosylation potential of maize: the human lactoferrin used as a model. Glycoconj J 18:519–527

    Article  PubMed  CAS  Google Scholar 

  • Samyn-Petit B, Wajda Dubos JP, Chirat F, Coddeville B, Demaizieres G, Farrer S, Slomianny MC, Theisen M, Delannoy P (2003) Comparative analysis of the site-specific N-glycosylation of human lactoferrin produced in maize and tobacco plants. Eur J Biochem 270:3235–3242

    Article  PubMed  CAS  Google Scholar 

  • Schöffl F, Schröder G, Kliem M, Rieping M (1993) An SAR sequence containing 395 bp DNA fragment mediates enhanced, gene-dosage-correlated expression of a chimaeric heat shock gene in transgenic tobacco plants. Transgenic Res 2:93–100

    Article  PubMed  Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17:315–319

    Article  PubMed  CAS  Google Scholar 

  • Stoger E, Sack M, Fischer R, Christou P (2002) Plantibodies: applications, advantages and bottlenecks. Curr Opin Biotechnol 13:161–166

    Article  PubMed  CAS  Google Scholar 

  • Stoger E, Schillberg S, Twyman RM, Fischer R, Christou P (2004) Antibody production in transgenic plants. Methods Mol Biol 248:301–318

    PubMed  CAS  Google Scholar 

  • Streatfield SJ (2005) Oral hepatitis B vaccine candidates produced and delivered in plant material. Immunol Cell Biol 83:257–262

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ, Howard JA (2003) Plant-based vaccines. Int J Parasitol 33:479–493

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ, Jilka JM, Hood EE, Turner DD, Bailey MR, Mayor JM, Woodard SL, Beifuss KK, Horn ME, Delaney DE, Tizard IR, Howard JA (2001) Plant-based vaccines: unique advantages. Vaccine 19:2742–2748

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ, Mayor JM, Barker DK, Brooks C, Lamphear BJ, Woodard SL, Beifuss KK, Vicuna D, Massey L-A, Horn ME, Delaney DE, Nikolov ZL, Hood EE, Jilka JM, Howard JA (2002) Development of an edible subunit vaccine in corn against enterotoxigenic strains of Escherichia coli. In Vitro Cell Dev Biol Plant 38:11–17

    Article  CAS  Google Scholar 

  • Streatfield SJ, Lane JR, Brooks CA, Barker DK, Poage ML, Mayor JM, Lamphear BJ, Drees CF, Jilka JM, Hood EE, Howard JA (2003) Corn as a production system for human and animal vaccines. Vaccine 21:812–815

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ, Magallanes-Lundback ME, Beifuss KK, Brooks CA, Harkey RL, Love RT, Bray J, Howard JA, Jilka JM, Hood EE (2004) Analysis of the maize polyubiquitin-1 promoter heat shock elements and generation of promoter variants with modified expression characteristics. Transgenic Res 13:299–312

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ, Love RT, Bray J (2006) Globulin 2 regulatory region and method of using same. US Patent 7,112,723, 26 September 2006

    Google Scholar 

  • Streatfield SJ, Love RT, Bray J (2007a) Embryo preferred promoter and method of using same. US Patent 7,183,109, 27 February 2007

    Google Scholar 

  • Streatfield SJ, Love RT, Bray J (2007b) Globulin-1 regulatory region and method of using same. US Patent 7,169,967, 30 January 2007

    Google Scholar 

  • Torney F, Moeller L, Scarpa A, Wang K (2007) Genetic engineering approaches to improve bioethanol production from maize. Curr Opin Biotechnol 18:193–199

    Article  PubMed  CAS  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570–578

    Article  PubMed  CAS  Google Scholar 

  • Twyman RM, Schillberg S, Fischer R (2005) Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 10:185–218

    Article  PubMed  CAS  Google Scholar 

  • Watson ME (1984) Compilation of published signal sequences. Nucleic Acids Res 12:5145–5164

    Article  PubMed  CAS  Google Scholar 

  • Watson SA (1988) Corn marketing, processing and utilization. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn, vol 18. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 885–942

    Google Scholar 

  • Whaley KJ, Zeitlin L (2000) Transgenic commensals as mucosal protectants. Nat Biotechnol 18:1038–1039

    Article  PubMed  CAS  Google Scholar 

  • Witcher DR, Hood EE, Peterson D, Bailey M, Bond D, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh R, Kappel W, Register I, James C, Howard JA (1998) Commercial production of β-glucuronidase (GUS): a model system for the production of proteins in plants. Mol Breed 4:301–312

    Article  CAS  Google Scholar 

  • Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA (2003) Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38:123–130

    Article  PubMed  CAS  Google Scholar 

  • Zhong GY, Peterson D, Delaney DE, Bailey MR, Witcher DR, Register III JC, Bond D, Li C-P, Marshall L, Kulisek E, Ritland D, Meyer T, Hood EE, Howard JA (1999) Commercial production of aprotinin in transgenic maize seeds. Mol Breed 5:345–356

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth E. Hood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

Hood, E.E., Howard, J.A. (2009). Over-expression of Novel Proteins in Maize. In: Kriz, A.L., Larkins, B.A. (eds) Molecular Genetic Approaches to Maize Improvement. Biotechnology in Agriculture and Forestry, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68922-5_8

Download citation

Publish with us

Policies and ethics