Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson AW (1967) Physical Chemistry of Surfaces. Second Edition, Interscience Publishers (John Wiley & Sons), New York

    Google Scholar 

  2. Ahmadi G (1987) On the mechanics of incompressible multiphase suspensions. Adv Water Res 10:32-43

    Google Scholar 

  3. Ahmadi G, Ma D (1990) A thermodynamical formulation for dispersed multiphase turbulent flows-I Basic theory. Int J Multiphase Flow 16:323-340

    MATH  Google Scholar 

  4. Albråten PJ (1982) The Dynamics of Two-Phase Flow. PhD thesis, Chalmers University of Technology, Göteborg, Sweden

    Google Scholar 

  5. Aleinov I, Puckett EG (1995) Computing Surface Tension with High-Order Kernels. In: Oshima, K., (ed) Proceedings of the 6th International Symposium on Computational Fluid Dynamics, pp. 13-18, Lake Tahoe, CA, USA.

    Google Scholar 

  6. Amsden AA, Harlow FH (1970) A Simplified MAC Technique for Incompressible Fluid Flow Calculations. J Comput Phys 6:322-325

    MATH  Google Scholar 

  7. Andersson TB, Jackson R (1967) A Fluid Mechanical Descriptin of Fluidized Beds: Equations of Motion. Ind Engng Chem Fundam 6(4):527-539

    Google Scholar 

  8. Ashgriz N, Poo JY (1991) FLAIR: Flux Line-Segment Model for Advection and Interface Reconstruction. J Comput Phys 93:449-468.

    MATH  Google Scholar 

  9. Aris R (1962) Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Dover, Inc., New York

    MATH  Google Scholar 

  10. Banerjee S, Chan AMC (1980) Separated Flow Models-I: Analysis of the Averaged and Local Instantaneous Formulations. Int J Multiphase Flow 6:1-24

    MATH  Google Scholar 

  11. Banerjee S (1999) Multifield Formulations. In: Modelling and Computation of Multiphase Flows, Short Course, Zurich, Switzerland, March 8-12, 14B:1-49.

    Google Scholar 

  12. Barkhudarov MR, Chin SB (1994) Stability of a numerical algorithm for gas bubble modelling. Int. J Numer Meth Fluids 19:415-437

    MATH  MathSciNet  Google Scholar 

  13. Batchelor GK (1970) An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  14. Beckermann C, Viskanta R (1993) Mathematical modeling of transport phenomena during alloy solidification. Appl Mech Rev 46(1):1-27

    MathSciNet  Google Scholar 

  15. Bedford A, Drumheller DS (1983) Theories of Immiscible and Structured Mixtures. Int J Engng Sci 21(8):863-960

    MATH  MathSciNet  Google Scholar 

  16. Bendiksen K, Malnes D, Moe R and Nuland S (1991) The dynamic two-fluid model OLGA: Theory and applications. SPE Production Engineers, pp. 171-180

    Google Scholar 

  17. Bennon WD, Incropera FP (1987) A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-II. Application to solidification in a regular cavity. Int J Heat Transfer 30(10): 2171-2187

    Google Scholar 

  18. Bertola F (2003) Modelling of Bubble Columns by Computational Dynamics. PhD thesis, Politecnico Di Torino, Torino

    Google Scholar 

  19. Bertola F, Grundseth J, Hagesaether L, Dorao C, Luo H, Hjarbo KW, Svendsen HF, Vanni M, Baldi G, Jakobsen HA (2005) Numerical Analysis and Experimental Validation of Bubble Size Distribution in Two-Phase Bubble Column Reactors. Multiphase Science & Technology, 17(1-2):123-145

    Google Scholar 

  20. Beux F, Banerjee S (1996) Numerical Simulation of Three-Dimensional Two-Phase Flows by Means of a Level Set Method. ECCOMAS 96 Proceedings, John Wiley.

    Google Scholar 

  21. Biesheuvel A, Wijngaarden L van (1984) Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J Fluid Mech 168:301-318

    Google Scholar 

  22. Bourè JA (1978) Constitutive Equations for Two-Phase Flows. In: Two-phase flows and heat transfer with application to nuclear reactor design problems, chap 9, von Karman Inst. Book, Hemisphere, New York

    Google Scholar 

  23. Bourè JA (1979) On the form of the pressure terms in the momentum and energy equations of the two-phase flow models. Int J Multiphase Flow 5:159-164

    MATH  Google Scholar 

  24. Bourè JA, Delhaye JM (1982) General Equations and Two-Phase Flow Modeling. In: Hetsroni G (ed) Handbook of Multiphase Systems, Section 1.2, pp. (1-36) - (1-95), McGraw-Hill, New York

    Google Scholar 

  25. Brackbill JU, Kothe DB, Zemach C (1992) A Continuum Method for Modeling SurfaceTension. J Comput Phys 100:335-354.

    MATH  MathSciNet  Google Scholar 

  26. Brenner H (1979) A Micromechanical Derivation of the Differential Equation of Interfacial Statics. Journal of Colloid and Interface Science 68 (3):422-439

    MathSciNet  Google Scholar 

  27. Buyevich YA (1971) Statistical hydrodynamics of disperse systems. Part 1. Physical background and general equations. J Fluid Mech 49(3):489-507

    MATH  Google Scholar 

  28. Buyevich YA, Shchelchkova IN (1978) Flow of Dense Suspensions. Prog Aerospace Sci 18:121-150

    Google Scholar 

  29. Carmo MP do (1976) Differential Geometry of Curves and Surfaces. Pretice-Hall, Inc, Englewood Cliffs

    Google Scholar 

  30. Celik I (1993) Numerical Uncertainty in Fluid Flow Calculations: Needs for Future Research. ASME J Fluids Engineering 115:194-195.

    Google Scholar 

  31. Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability. Dover Publications, New York.

    Google Scholar 

  32. Chang YC, Hou TY, Merriman B, Osher S (1996) A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows. J Comput Phys 124:449-464.

    MATH  MathSciNet  Google Scholar 

  33. Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comput 22:745-762.

    MATH  MathSciNet  Google Scholar 

  34. Clift R, Grace JR, Weber ME (1978) Bubble, Drops, and Particles. Academic Press, New York

    Google Scholar 

  35. Colebrook CF (1939) Turbulent Flow in Pipes, with particular reference to the Transition Region between Smooth and Rough Pipe Laws. J Inst Civ Eng 12(4):133-156

    Google Scholar 

  36. Crowe CT (1982) Review: numerical models for dilute gas-particle flows. J Fluids Engng 104:297-303

    Google Scholar 

  37. Crowe CT, Troutt TR, Chung JN (1996) Numerical Models for Two-Phase Turbulent Flows. Annu Rev Fluid Mech 28:11-43.

    MathSciNet  Google Scholar 

  38. Crowe CT, Sommerfeld M, Tsuji Y (1998) Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton.

    Google Scholar 

  39. Danckwerts PV (1953) Continuous flow systems: Distribution of Residence Times. Chem Eng Sci 2(1):1-18

    Google Scholar 

  40. Danov KD, Gurkov TD, Dimitrova T, Ivanov IB, Smith D (1997) Hydrodynamic Theory for Spontaneously Growing Dimple in Emulsion Films with Surfactant Mass Transfer. Journal of Colloid and Interface Science 188:313-324

    Google Scholar 

  41. Deemer AR, Slattery JC (1978) Balance Equations and Structural Models for Phase Interfaces. Int J Multiphase Flow 4:171-192

    MATH  Google Scholar 

  42. Delhaye JM (1974) Jump Conditions and Entropy Sources in Two-Phase Systems: Local Instant Formulation. Int J Multiphase Flow 1:395-409

    MATH  Google Scholar 

  43. Delhaye JM, Achard JL (1977) On the averaging operators introduced in two-phase flow. In: Banerjee S, Weaver JR (eds) Transient Two-phase Flow. Proc. CSNI Specialists Meeting, Toronto, 3.-4. august

    Google Scholar 

  44. Delhaye JM (1977) Instantaneous space-averaged equations. In: Kakac S, Mayinger F Two-Phase Flows and Heat Transfer. Vol. 1, pp. 81-90, Hemisphere, Washington, DC

    Google Scholar 

  45. Delhaye JM (1977) Local time-averaged equations. In: Kakac S, Mayinger F Two-Phase Flows and Heat Transfer. Vol. 1, pp. 91-100, Hemisphere, Washington, DC

    Google Scholar 

  46. Delhaye JM (1977) Space/time and Time/space-averaged equations. In: Kakac S, Mayinger F Two-Phase Flows and Heat Transfer. Vol. 1, pp. 101-114, Hemisphere, Washington, DC

    Google Scholar 

  47. Delhaye JM, Achard JL (1978) On the use of averaging operators in two phase flow modeling: Thermal and Aspects of Nuclear Reactor Safty, 1: Light Water Reactors. ASME Winter Meeting

    Google Scholar 

  48. Delhaye JM (1981) Basic Equations for Two-Phase Flow Modeling. In: Bergles AE, Collier JG, Delhaye JM, Hewitt GF, Mayinger F (eds) Two-Phase Flow and Heat Transfer in the Power and Process Industries. Hempsherer Publishing, Washington

    Google Scholar 

  49. Delnoij E, Kuipers JAM, van Swaaij WPM (1997) Computational fluid dynamics applied to gas-liquid contactors. Chem Eng Sci 52 (21/22):3623-3638.

    Google Scholar 

  50. Delnoij E (1999) Fluid Dynamics of Gas-Liquid Bubble Columns. PhD thesis, University of Twente, The Netherlands, Twente.

    Google Scholar 

  51. Dobran F (1983) On the formulation of conservation, balance and constitutive equations for multiphase flows. In: Vezirogly TN (ed) Proc 3rd Multiphase Flow and Heat Transfer Symposium.

    Google Scholar 

  52. Drew DA (1971) Averaged Field Equations for Two-Phase Media. Stud Appl Math 50(2):133-166

    MATH  Google Scholar 

  53. Drew DA, Lahey RT Jr (1979) Application of general constitutive principles to the derivation of multidimensional two-phase flow equations. Int J Multiphase Flow. 5:243-264

    MATH  Google Scholar 

  54. Drew DA (1983) Mathematical Modeling of Two-Phase Flow. Ann Rev Fluid Mech 15:261-291

    Google Scholar 

  55. Drew DA (1992) Analytical Modeling of Multiphase Flows: Modern Developments and Advances. In: Lahey RT jr (ed) Boiling Heat Transfer, pp. 31-83, Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  56. Drew DA, Lahey RT Jr (1993) Analytical Modeling of Multiphase Flow. In: Roco MC (ed) Particulate Two-Phase Flow, Chapt. 16, pp. 509-566, Butterworth-Heinemann, Boston

    Google Scholar 

  57. Drew DA, Wallis GB (1994) Fundamentals of Two-Phase Flow Modeling. Multiphase Science and Technology 8:1-67

    Google Scholar 

  58. Drew DA, Passman SL (1999) Theory of Multicomponent Fluids. Springer, New York

    Google Scholar 

  59. Drew DA (2005) Probability and repeatibility: One particle diffusion. Nuclear Engineering and Design 235:1117-1128

    Google Scholar 

  60. Duckworth OW, Cygan RT, Martin ST (2004) Linear Free Energy Relationships between Dissolution Rates and Molecular Modeling Energies of Rhombohedral Carbonates. Langmuir 20:2938-2946

    Google Scholar 

  61. Duducovič MP (1999) Trends in Catalytic Reaction Engineering. Catal Today 48 (1-4):5-15

    Google Scholar 

  62. Edwards CH Jr, Penny DE (1982) Calculus and Analytic Geometry. Prentice-Hall Inc, Englewood Cliffs, New Jersey

    Google Scholar 

  63. Edwards DA, Brenner H, Wasan DT (1991) Interfacial Transport Processes and Rheology. Butterworth-Heinemann, Boston

    Google Scholar 

  64. Elghobashi SE, Abou-Arab TW (1983) A two-equation turbulence model for two-phase flows. Phys Fluids 26(4):931-938.

    MATH  Google Scholar 

  65. Elghobashi SE, Truesdell GC (1993) On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys Fluids A5 (7):1790-1801

    Google Scholar 

  66. Elghobashi SE (1994) On predicting particle laden turbulent flows. Appl Sci Res 52:309-329.

    Google Scholar 

  67. Enwald H, Peirano E, Almstedt AE (1996) Eulerian Two-Phase Flow Theory Applied to Fluidization. Int J Multiphase Flow 22:21-66, Suppl.

    MATH  Google Scholar 

  68. Ervin EA, Tryggvason G (1997) The rise of bubbles in a vertical shear flow. ASME J Fluid Engineering 119:443-449

    Google Scholar 

  69. Esmaeeli A, Ervin E, Tryggvason G (1994) Numerical simulations of rising bubbles. In: Blake JR, Boulton-Stone JM, Thomas NH (eds) Bubble Dynamics and Interfacial Phenomena. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  70. Esmaeeli A, Tryggvason G (1996) An Inverse Energy Cascade in Two-Dimensional Low Reynolds Number Bubbly Flows. J Fluid Mech 314:315-330

    MATH  Google Scholar 

  71. Esmaeeli A, Tryggvason G (2004) Computations of film boiling. Part I: numerical method. Int J Heat Mass Transfer 47:5451-5461

    MATH  Google Scholar 

  72. Esmaeeli A, Tryggvason G (2004) A front tracking method for computations of boiling in complex geometries. Int J Multiphase Flow 30:1037-1050

    MATH  Google Scholar 

  73. Fan F-S, Tsuchiya K (1990) Bubble Wake Dynamics in Liquids and Solid-Liquid Suspensions. Butterworth-Heinemann, Boston

    Google Scholar 

  74. Fan F-S, Zhu C (1998) Principles of Gas-Solid Flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  75. Favre A (1965) Equations des gaz turbulents compressibles. J Mechanique 4(3):361-390

    Google Scholar 

  76. Favre A (1969) Statistical Equations of Turbulent Gases. Problems of Hydrodynamics and Continuum Mechanics. SIAM, pp. 231-266, Philadelphia (PA)

    Google Scholar 

  77. Ferziger JH, Kaper HG (1972) Mathematical Theory of Transport Processes in Gases. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  78. Fogler Scott H (2006) Elements of Chemical Reaction Engineering. Fourth Edition, Prentice-Hall International, Inc, New Jersey

    Google Scholar 

  79. Freitas J (1993) Editorial. Transactions of the ASME, Journal of Fluids Engineering. New York: American Society of Mechanical Engineers 115:339-340.

    Google Scholar 

  80. Froment GF, Bischoff KB (1990) Chemical Reactor Analysis and Design. John Wiley and Sons, New York

    Google Scholar 

  81. Ganesan S, Poirier DR (1990) Conservation of Mass and Momentum for the Flow of Interdendritic Liquid during Solidification. Metallurgical Transactions B 21B:173-181

    Google Scholar 

  82. Ganesan V, Brenner H (2000) A diffuse interface model of two-phase flow in porous media. Proc R Soc Lond A 456:731-803

    MATH  MathSciNet  Google Scholar 

  83. Gibbs JW (1928) The Collected Works of J. Willard Gibbs. Longmans, Green & Co, New York

    Google Scholar 

  84. Gidaspow D (1974) Introduction to Modeling of Two-Phase Flow. Round Table Discussion (RT-1-2). Proc 5th Int Heat Transfer Conf Vol VII, p. 163.

    Google Scholar 

  85. Gidaspow D (1994) Multiphase Flow and Fluidization-Continuum and Kinetic Theory Descriptions. Academic Press, Harcourt Brace & Company, Publishers, Boston

    MATH  Google Scholar 

  86. Gosman AD, Pun WM, Runchal AK, Spalding DB, Wolfshtein M (1969) Heat and Mass Transfer in Recirculating Flows. Academic Press, London and New York

    Google Scholar 

  87. Gosman AD, Lekakou C, Polits S, Issa RI, Looney MK (1992) Multidimensional Modeling of Turbulent Two-Phase Flows in Stirred Vessels. AIChE J 38(12):1946-1956

    Google Scholar 

  88. Gotaas C, Havelka P, Roth N, Hase M, Weigand B, Jakobsen HA, Svendsen HF (2004) Influence of viscosity on droplet-droplet collision behaviour: Experimental and numerical results. CHISA 2004, Prague, Czech Republic, August 22-26.

    Google Scholar 

  89. Gray WG (1975) A Derivation of the Equations for Multi-Phase Transport. Chem Eng Sci 30:229-233

    Google Scholar 

  90. Gray WG, Lee PCY (1977) On the Theorems for Local Volume Averaging of Multiphase Systems. Int J Multiphase Flow 3:333-340

    MATH  Google Scholar 

  91. Gray WG (1983) Local Volume Averaging of Multiphase Systems Using A Non-Constant Averaging Volume. Int J Multiphase Flow 9(6):755-761

    MATH  Google Scholar 

  92. Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S (1999) Volume-of Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows. J Comput Phys 152:423-456.

    MATH  Google Scholar 

  93. Hagesæther L, Jakobsen HA, Svendsen HF (1999) Theoretical analysis of fluid particle collisions in turbulent flow. Chem Eng Sci 54:4749-4755.

    Google Scholar 

  94. Heinbockel JH (2001) Introduction to Tensor Calculus and Continuum Mechanics. Trafford Publishing, Canada (ISBN 1553691334)

    Google Scholar 

  95. Han J, Tryggvason G (1999) Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force. Physics of Fluids 11(12):3650-3667

    Google Scholar 

  96. Harlow FH, Welch JE (1965) Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics and Fluids 8:2182-2189

    Google Scholar 

  97. Harlow FH, Amsden AA (1975) Numerical Calculation of Multiphase Fluid Flow. J Comput physics 17:19-52

    Google Scholar 

  98. Hassanizadeh M, Gray WG (1979) General conservation equations for multi-phase systems: 1. Averaging procedure. Advances in Water Resources 2:131-144

    Google Scholar 

  99. Hassanizadeh M, Gray WG (1979) General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations. Advances in Water Resources 2:191-203

    Google Scholar 

  100. Hassanizadeh M, Gray WG (1980) General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. Advances in Water Resources 3:25-40

    Google Scholar 

  101. Hassanizadeh M, Gray WG (1987) High Velocity Flow in Porous Media. Transport in Porous Media 2:521-531

    Google Scholar 

  102. Hassanizadeh M, Gray WG (1990) Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv Water Resources 13(4):169-186

    Google Scholar 

  103. Hidy GM, Broch JR (1970) The Dynamics of Aerocolloidal Systems. Pergamon, Oxford

    Google Scholar 

  104. Hinch EJ (1977) An average-equation approach to particle interactions in a fluid suspension. J Fluid Mech 83(4):695-720

    MATH  Google Scholar 

  105. Hinze JO (1975) Turbulence. Second Edition, McGraw-Hill, New York

    Google Scholar 

  106. Hirt CW (1968) Heuristic stability theory for finite difference equations. J Comput Phys 2:339-355

    MATH  Google Scholar 

  107. Hirt CW, Nichols BD (1980) Adding Limited Compressibility to Incompressible Hydrocodes. J Comput Phys 34:390-300

    MATH  MathSciNet  Google Scholar 

  108. Hirt CW, Nichols BD (1981) Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J Comput Phys 39:201-225

    MATH  Google Scholar 

  109. Holm DD, Kupershmidt BA (1986) A multipressure regulation for multiphase flow. Int J Multiphase Flow, 12(4):681-697

    MATH  MathSciNet  Google Scholar 

  110. Howes FA, Whitaker S (1985) The Spatial Averaging Theorem Revisited. Chem Eng Sci 40(8): 1387-1392

    Google Scholar 

  111. Hyman JM (1984) Numerical Methods for Tracking Interfaces. Physica 12D:396-407.

    Google Scholar 

  112. Ishii M (1975) Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris

    MATH  Google Scholar 

  113. Ishii M, Chawla TC (1979) Local drag laws in dispersed two-phase flows. Argonne National Laboratory Report NUREG/CR-1230, ANL-79-105, Argonne, Illinois, USA

    Google Scholar 

  114. Ishii M, Mishima K (1981) Study of two-fluid model and interfacial area. Argonne National Laboratory Report ANL-80-111, Argonne, Illinois, USA

    Google Scholar 

  115. Ishii M, Mishima K (1984) Two-Fluid Model and hydrodynamic Constitutive Equations. Nuclear Engineering and Design 82:107-126

    Google Scholar 

  116. Ishii M (1990) Two-fluid model for two-phase flow. Multiphase Science and Technology 5 (chap 1) Hemisphere, New York

    Google Scholar 

  117. Issa RI, Oliveira PJ (1995) Numerical Prediction of Turbulent Dispersion in Two-Phase Jet Flows. In: Celata GP, Shah RK (eds) Two-Phase Flow Modelling and Experimentation. pp. 421-428

    Google Scholar 

  118. Ivanov IB (1988) Thin Liquid Films. Fundamentals and Applications. Marcel Dekker Inc, New York and Basel

    Google Scholar 

  119. Jakobsen HA (1993) On the modelling and simulation of bubble column reactors using a two-fluid model. Dr Ing Thesis, Norwegian Institute of Technology, Trondheim, Norway.

    Google Scholar 

  120. Jakobsen HA, Sannæs BH, Grevskott S, Svendsen HF (1997) Modeling of Vertical Bubble Driven Flows. Ind Eng Chem Res 36 (10):4052-4074.

    Google Scholar 

  121. Jakobsen HA (2001) Phase Distribution Phenomena in Two-Phase Bubble Column Reactors. Chem Eng Sci 56(3):1049-1056

    MathSciNet  Google Scholar 

  122. Jakobsen HA, Lindborg H, Handeland V (2002) A numerical study of the interactions between viscous flow, transport and kinetics in fixed bed reactors. Computers and Chemical Engineering 26:333-357

    Google Scholar 

  123. Jakobsen HA (2003) Numerical Convection Algorithms and Their Role in Eulerian CFD Reactor Simulations. International Journal of Chemical Reactor Engineering A1:1-15.

    MathSciNet  Google Scholar 

  124. Jayatilleke CLV (1969) The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer. Prog Heat Mass Transfer 1:193-329

    Google Scholar 

  125. Johansen ST (1990) On the Modelling of Dispersed Two-Phase Flows. Dr Techn thesis, The Norwegian Institute of Technology, Trondheim.

    Google Scholar 

  126. Joseph DD, Lundgren TS, Jackson R, Saville DA (1990) Ensemble Averaged and Mixture Theory Equations for Incompressible Fluid-Particle Suspensions. Int J Multiphase Flow 16 (1):35-42

    MATH  Google Scholar 

  127. Juric D, Tryggvason G (1996) A Front-Tracking Method for Dendritic Solidification. J Comput Phys 123:127-148

    MATH  MathSciNet  Google Scholar 

  128. Juric D, Tryggvason G (1998) Computations of Boiling Flows. Int J Multiphase Flow. 24(3):387-410

    MATH  Google Scholar 

  129. Kolev NI (2002) Multiphase Flow Dynamics 1: Fundamentals. Springer, Berlin

    MATH  Google Scholar 

  130. Kuipers JAM, van Swaaij WPM (1997) Application of Computational Fluid Dynamics to Chemical Reaction Engineering. Reviews in Chemical Engineering 13 (3):1-118.

    Google Scholar 

  131. Kuo KK (1986) Principles of Combustion. John Wiley & Sons, New York

    Google Scholar 

  132. Lafaurie B, Nardone C, Scardovelli R, Zaleski S, Zanetti G (1994) Modelling Merging and Fragmentation in Multiphase Flows with SURFER. J Comput Phys 113:134-147.

    MATH  MathSciNet  Google Scholar 

  133. Lafi AY, Reyes JN (1994). General particle transport equations. Final Report OSU-NE-9409. Department of Nuclear Engineering, Oregon State University

    Google Scholar 

  134. Lahey RT Jr, Cheng LY, Drew DA, Flaherty JE (1980) The effect of virtual mass on the numerical stability of accelerating two-phase flows. Int J Multiphase Flow 6:281-294

    Google Scholar 

  135. Lahey RT Jr, Drew DA (1989) The Three-Dimensional Time-and Volume Averaged Conservation Equations of Two -Phase Flow. Advances in Nuclear Science and Technology 20:1-69

    Google Scholar 

  136. Lahey RT Jr (1992) The prediction of phase distribution and separation phenomena using two-fluid models. In: Lahey RT Jr (ed) Boiling Heat Transfer. Elsevier Science Publishers BV

    Google Scholar 

  137. Lahey RT Jr, Drew DA (1992) On the Development of Multidimensional Two-Fluid Models for Vapor/Liquid Two-Phase Flows. Chem Eng Comm 118:125-139

    Google Scholar 

  138. Laplace PS (1806) Traité de Méchanique Céleste. Supplement to book 10, Vol. IV. Paris: Gauthier-Villars, 1806. Annotated English translation by Nathaniel Bowditch (1839). Reprinted by New York: Chelsea Publishing Company, 1996

    Google Scholar 

  139. Laux H (1998) Modeling of dilute and dense dispersed fluid-particle flow. Dr Ing Thesis, Norwegian University of Science and Technology, Trondheim, Norway

    Google Scholar 

  140. Leonard BP, Drummond JE (1995) Why you should not use ’Hybrid’, ’Power-Law’ or related exponential schemes for convective modelling - There are much better alternatives. Int J for Numerical Methods in Fluids 20:421-442.

    MATH  Google Scholar 

  141. Li Y, Zhang J, Fan L-S (1999) Numerical simulation of gas-liquid-solid fluidization systems using a combined CFD-VOF-DPM method: bubble wake behavior. Chem Eng Sci 54:5101-5107.

    Google Scholar 

  142. Liljegren LM (1997) Ensemble-Average Equations of a Particulate Mixture. J Fluids Engr 119:428-434

    Google Scholar 

  143. Lopez de Bertodano M (1992) Turbulent Bubbly Two-Phase Flow in a Triangular Duct. PhD Thesis, Rensselaer Polytechnic Institute, Troy, NY

    Google Scholar 

  144. Lyckowski RW, Gidaspow D, Solbrig CW, Hughes ED (1978) Characteristics and stability analysis of transient one-dimensional two-phase flow equation and their finite difference approximations. Nucl Sci Engng 66:378-396

    Google Scholar 

  145. Manninen M, Taivassalo V, Kallio S (1996) On the mixture model for multiphase flow. Technical Research Center of Finland: VIT Publications, Espoo.

    Google Scholar 

  146. Mavrovouniotis GM, Brenner H (1993) A Micromechanical Investigation of Interfacial Transport Processes. I. Interfacial Conservation Equations. Phil Trans R Soc Lond A 345:165-207

    MATH  Google Scholar 

  147. Mavrovouniotis GM, Brenner H, Edwards DA, Ting L (1993) A Micromechanical Investigation of Interfacial Transport Processes. II. Interfacial Constitutive Equations. Phil Trans R Soc Lond A 345:209-228

    MATH  Google Scholar 

  148. Maxey MR, Riley JJ (1983) Equation of motion for a a mall rigid sphere in a non-uniform flow. Phys Fluids 26 (4):883-889.

    MATH  Google Scholar 

  149. Meier M, Andreani M, Smith B, Yadigaroglu G (1998) Numerical and Experimental Study of Large Stream-Air Bubbles Condensing in Water. Proc Third Int Conf Multiphase Flow, Lyon, June 8-12

    Google Scholar 

  150. Miller CA, Neogi P (1985) Interfacial Phenomena: Equilibrium and Dynamic Effects. Marcel Dekker, Inc., New York and Basel

    Google Scholar 

  151. Moeckel GP (1975) Thermodynamics of an Interface. Arch ration Mech Analysis 57:255-280

    MATH  MathSciNet  Google Scholar 

  152. Mostafa AA, Mongia HC (1987) On the modeling of turbulent evaporating sprays: Eulerian versus Lagrangian approach. Int J Heat Mass Transfer 30 (12):2583-2593.

    Google Scholar 

  153. Ni J, Beckermann C (1990) A Two-Phase Model for Mass, Momentum, Heat, and Species Transport during Solidification. In: Charmchi M, Chyu MK, Joshi Y, Walsh SM (eds) Transport Phenomena in Material Processing, New York. ASME HTD-VOL. 132:45-56

    Google Scholar 

  154. Ni J, Beckermann C (1991) A Volume-Averaged Two-Phase Model for Transport Phenomena during Solidification. Metallurgical Transactions B 22B:349-361

    Google Scholar 

  155. Nichols BD, Hirt CW (1975) Methods for Calculating Multi-Dimensional, Transient, Free Surface Flows Past Bodies. Proceedings First Intern Conf Num Ship Hydrodynamics, Gaithersburg, Md, October.

    Google Scholar 

  156. Nigmatulin RI (1979) Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int J of Multiphase Flow 5:353-385

    MATH  Google Scholar 

  157. Nigmatulin RI, Lahey RT Jr, Drew DA (1996) On the Different Forms of Momentum Equations and on the Intra- and Interphase Interaction in the Hydromechanics of a Monodispersed Mixture. Chem Eng Comm 141-142:287-302

    Google Scholar 

  158. Nobari MR, Jan Y-J, Tryggvason G (1996) Head-on collision of droplets - A numerical investigation. Phys Fluids 8(1):29-42

    MATH  Google Scholar 

  159. Pan Y, Suga K (2005) Numerical simulation of binary liquid droplet collision. Phys Fluids 17 (8):82105-082105-14

    Google Scholar 

  160. Patankar SV (1980) Numerical heat transfer and fluid flow. Series in Computational Methods in Mechanics and Thermal Sciences, Hemisphere publishing corporation, New York.

    MATH  Google Scholar 

  161. Pauchon C, Banerjee S (1986) Interface momentum interaction effects in the averaged multifield model. Part I: Void propagation in bubbly flows. Int J Multiphase Flow 12(4):559-573

    Google Scholar 

  162. Pauchon C, Banerjee S (1988) Interphase momentum interaction effects in the averaged multifield model, P art II: Kinematic waves and interfacial drag in bubbly flows. Int J Multiphase Flow 14(3):253-264

    Google Scholar 

  163. Poirier DR, Nandapurkar PJ, Ganesan S (1991) The Energy and Solute Conservation Equation for Dendritic Solidification. Metallurgical Transactions B 22B: 889-900

    Google Scholar 

  164. Popinet S, Zaleski S (1999) A Front-Tracking Algorithm for Accurate Representation of Surface Tension. Int J Numer Meth Fluids 30:775-793.

    MATH  Google Scholar 

  165. Prescott PJ, Incropera FP (1994) Convective Transport Phenomena and Macrosegregation During Solidification of a Binary Metal Alloy: I-Numerical Predictions. J Heat Transfer 116:735-749

    Google Scholar 

  166. Probstain RF (1994) Physicochemical Hydrodynamics: An Introduction, Second edition, John Wiley & Sons, Inc, New York

    Google Scholar 

  167. Prosperetti A, van Wijngaarden L (1976) On the characteristics of the equation of motion for bubbly flow and the related problem of critical flow. Journal of Engineering Math 10(2):153-162

    MATH  Google Scholar 

  168. Prosperetti A, Jones AV (1984) Pressure forces in dispersed two-phase flow. Int Journal of Multiphase Flow 10(4):425-440

    MATH  Google Scholar 

  169. Prosperetti A, Zhang DZ (1996) Disperse Phase Stress in Two-Phase Flow. Chem Eng Comm 141-142:387-398

    Google Scholar 

  170. Qian J, Tryggvason G, Law CK (1998) A Front Tracking Method for the Motion of Premixed Flames. J Comput Phys 144:52-69

    Google Scholar 

  171. Quintard M, Whitaker S (1993) Transport in Ordered and Disordered Porous Media: Volume-Averaged Equations, Closure Problems, and Comparisons with Experiments. Chem Eng Sci 48(14):2537-2564

    Google Scholar 

  172. Ramshaw JD, Trapp JA (1978) Characteristics, stability and short wavelength phenomena in two-phase flow equation systems. Nucl Sci Engng 66:93-102

    Google Scholar 

  173. Ransom VH, Ramshaw JD (1988) Discrete Modeling Considerations in Multiphase Fluid Dynamics. Japan - U.S. Seminar on Two-Phase Flow Dynamics, Kyoto, Japan, 15. July.

    Google Scholar 

  174. Raupach MR, Shaw RH (1982) Averaging Procedures for Flow within Vegetation Canopies. Boundary Layer Meteorology 22:79-90

    Google Scholar 

  175. Reeks MW (1991) On a kinetic equation for the transport of particles in turbulent flows. Physics of Fluids A 3:446-456

    MATH  Google Scholar 

  176. Reyes Jr JN (1989) Statistically derived conservation equations for fluid particle flows. Proc ANS Winter Meeting. Nuclear Thermal Hydraulics, 5th Winter Meeting

    Google Scholar 

  177. Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos Trans Roy Soc London A186:123-164

    Google Scholar 

  178. Richtmyer RD, Morton KW (1957) Difference Methods for Initial-Value Problems. Second Edition, Interscience Publishers (John Wiley & Sons), New York

    MATH  Google Scholar 

  179. Rider WJ, Kothe DB (1995) Stretching and Tearing Interface Tracking Methods. AIAA paper 95-1717, pp. 806-816.

    Google Scholar 

  180. Rider WJ, Kothe DB (1998) Reconstructing Volume Tracking. J Comput Phys 141:112-152.

    MATH  MathSciNet  Google Scholar 

  181. Roberts IF (1997) Conservation Equations, Two-Phase. Int Encyclopedia of Heat and Mass Transfer, pp. 223-230

    Google Scholar 

  182. Sanyal J, Vásquez S, Roy S, Dudukovic MP (1999) Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors. Chem Eng Sci 54:5071-5083

    Google Scholar 

  183. Scardovelli R, Zaleski S (1999) Direct Numerical Simulation of Free-Surface and Interfacial Flow. Annu Rev Fluid Mech 31:567-603

    MathSciNet  Google Scholar 

  184. Schwartz MP, Turner WJ (1988) Applicability of the standard k-ε turbulence model to gas-stirred baths. Appl Math Modelling 12:273-279

    Google Scholar 

  185. Scriven LE (1960) Dynamics of a fluid interface. Chem Eng Sci 12:98-108

    Google Scholar 

  186. Sethian JA (1996) Level Set Methods. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  187. Sha WT, Soo SL (1978) Multidomain Multiphase Fluid Mechanics. Int J Heat Mass Transfer 21:1581-1595

    MATH  Google Scholar 

  188. Sha WT, Soo SL (1979) Brief Communication: On the effect of pΔα term in multiphase mechanics. Int J Multiphase Flow 5:153-158

    Google Scholar 

  189. Sha WT, Slattery JC (1980) Local Volume-Time Averaged Equations of Motion for Dispersed, Turbulent, Multiphase Flows. NUREG/CR-1491, ANL-80-51

    Google Scholar 

  190. Sha WT, Chao BT, Soo SL (1983) Averaging Procedures of Multiphase Conservation Equations. Transactions of the American Nuclear Society 45:814-816

    Google Scholar 

  191. Sha WT, Chao BT, Soo SL (1983) Time Averaging of Volume-Averaged Conservation Equations of Multiphase Flow. AIChE Symposium Series 79(225):420-426

    Google Scholar 

  192. Sha WT, Chao BT, Soo SL (1984) Porous-Media Formulation for Multiphase Flow with Heat Transfer. Neclear Engineering and Design 82:93-106

    Google Scholar 

  193. Shyy W, Thakur S, Ouyang H, Liu J, Blosch E (1997) Computational Techniques for Complex Transport Phenomena. Cambridge University Press, Cambridge

    Google Scholar 

  194. Slattery JC (1967) Flow of Viscoelastic Fluids Through Porous Media. AIChE J 13(6):1066-1071

    Google Scholar 

  195. Slattery JC (1969) Single-Phase Flow through Porous Media. AIChE J 15(6):866-872

    Google Scholar 

  196. Slattery JC (1972) Momentum, Energy, and Mass Transfer in Continua. Second Edition, McGraw-Hill Kogakusha, LTD, Tokyo

    Google Scholar 

  197. Slattery JC (1980) Invited Review: Interfacial Transport Phenomena. Chem Eng Sci 4:149-166

    Google Scholar 

  198. Slattery JC, Flumerfelt RW (1982) Interfacial Phenomena. In: Hetsroni G (ed) Handbook of Multiphase Systems, Section 1.4, pp. (1-224) - (1-2246), McGraw-Hill, New York

    Google Scholar 

  199. Slattery JC (1990) Interfacial Transport Phenomena. Springer-Verlag, New York

    Google Scholar 

  200. Slattery JC (1999) Advanced Transport Phenomena. Cambridge University Press, New York

    MATH  Google Scholar 

  201. Sokolichin A, Eigenberger G, Lapin A, Lübbert A (1997) Dynamic numerical simulations of gas-liquid two-phase flows. Euler/Euler versus Euler/Lagrange. Chem Eng Sci 52 (4):611-626.

    Google Scholar 

  202. Sokolichin A, Eigenberger G (1999) Applicability of the standard ĸ-ε turbulence model to the dynamic simulation of bubble columns: Part I. Detailed numerical simulations. Chem Eng Sci 54:2273-2284.

    Google Scholar 

  203. Sommerfeld M (2001) Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. Int J Multiphase Flow 27:1829-1858

    MATH  Google Scholar 

  204. Soo SL (1967) Fluid Dynamics of Multiphase Systems. Blaisdell Publishing Company, Waltham, Massachusetts

    MATH  Google Scholar 

  205. Soo SL (1989) Particles and Continuum: Multiphase Fluid Dynamics. Hemisphere Publishing Corporation, New York

    Google Scholar 

  206. Soo SL (1990) Multiphase Fluid Dynamics. Science Press, Beijing and Gower Technical, Aldershot

    Google Scholar 

  207. Spalding DB (1977) The Calculation of Free-Convection Phenomena in Gas-Liquid Mixtures. ICHMT Seminar 1976. Published in: Turbulent Buoyant Convection, Hemisphere, Washington, pp. 569-586.

    Google Scholar 

  208. Spalding DB (1980) Numerical Computation of Multi-Phase Fluid Flow and Heat Transfer. In: Taylor C. et al. (eds) Recent Advances in Numerical Methods in Fluids. Pineridge Press, pp. 139-167.

    Google Scholar 

  209. Spalding DB (1980) Mathematical Methods in Nuclear Reactor Thermal Hydraulics. In: Lahey RT (ed) Proceedings of ANS Meeting on Nuclear Reactor Thermal Hydraulics, Saratoga, N. Y., pp. 1979-2023.

    Google Scholar 

  210. Spalding DB (1981) IPSA 1981; New Developments and Computed Results. HTS/81/2, Imperial College of Science and Technology, London, 1981.

    Google Scholar 

  211. Spalding DB (1985) Computer Simulation of Two-Phase Flows, with Special Reference to Nuclear-Reactor Systems. In: Lewis RW, Morgan K, Johanson JA, Smith WR (eds) Computational Techniques in heat Transfer, pp. 1-44.

    Google Scholar 

  212. Stewart HB, Wendroff B (1984) Two-Phase Flow: Models and Methods. J Comput Phys 56:363-409

    MATH  MathSciNet  Google Scholar 

  213. Stuhmiller JH (1977) The Influence of interfacial pressure forces on the character of two-phase flow model equations. Int J Multiphase Flow 3:551-560

    MATH  Google Scholar 

  214. Sussman M, Smereka P, Osher S (1994) A Level-Set Approach for Computing Solutions to Incompressible Two-Phase Flow. J Comput Phys 114:146-159.

    MATH  Google Scholar 

  215. Sussman M, Smereka P (1997) Axisymmetric free boundary problems. J Fluid Mech 341:269-294.

    MATH  MathSciNet  Google Scholar 

  216. Tayebi D, Svendsen HF, Jakobsen HA, Grislingås A (2001) Measurement Techniques and Data Interpretations for Validating CFD Multiphase Reactor Models. Chem Eng Comm 186:57-159

    Google Scholar 

  217. Thomas GB Jr, Finney RL (1996) Calculus and Analytic Geometry. Addison-Wesley Publishing Company, 9th Edition, Reading, Massachusetts

    Google Scholar 

  218. Tomiyama A, Miyoshi K, Tamai H, Zun I, Sakaguchi T (1998) A bubble tracking method for the prediction of spatial evolution of bubble flow in a vertical pipe. Third International Conference on Multiphase Flow, Lyon, France

    Google Scholar 

  219. Trapp JA (1986) The mean flow character of two-phase flow equations. Int J Multiphase Flow 12(2):263-276

    MATH  Google Scholar 

  220. Travis JR, Harlow FH, Amsden AA (1976) Numerical calculations of two-phase flows. Nucl Sci Engng 61:1-10

    Google Scholar 

  221. Tryggvason G, Bunner B, Esmaeeli A, Mortazavi S (1998) Direct numerical simulations of dispersed flows. Third International Conference on Multiphase Flow, ICMF’98, Lyon, France, June 8-12.

    Google Scholar 

  222. Tryggvason G (1999) Embedded Interface Methods Applications. In: Modelling and Computation of Multiphase Flows, Short Course, Zurich, Switzerland, March 8-12, 16B:1-27.

    Google Scholar 

  223. Tryggvason G (1999) Embedded Interface Methods Applications. In: Modelling and Computation of Multiphase Flows, Short Course, Zurich, Switzerland, March 8-12, 18B:1-24.

    Google Scholar 

  224. Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan Y-J (2001) A Front-Tracking Method for the Computations of Multiphase Flow. J Comput Phys 169:708-759

    MATH  Google Scholar 

  225. Tryggvason G, Esmaeeli A, Al-Rawahi N (2005) Direct numerical simulations of flows with phase change. Computers and Structures 83:445-453

    Google Scholar 

  226. Ubbink O, Issa I (1999) A method for capturing sharp fluid interfaces on arbitrary meshes. J Comput Phys 153:26-50

    MATH  MathSciNet  Google Scholar 

  227. Unverdi SO, Tryggvason G (1992) A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows. J Comput Phys 100:25-37.

    MATH  Google Scholar 

  228. Unverdi SO, Tryggvason G (1992) Computations of multi-fluid flows. Physica D60:70-83, North-Holland

    Google Scholar 

  229. Vernier P, Delhaye JM (1968) General two-phase flow equations applied to the thermo-hydrodynamics of boiling water nuclear reactors. Energie Primare 4(1-2)

    Google Scholar 

  230. Voller VR, Brent AD, Prakash C (1989) The modelling of heat, mass and solute transport in solidification systems. Int J Heat Transfer 32(9):1719-1731

    Google Scholar 

  231. Wallis GB (1969) One-dimensional Two-phase Flow. McGraw-Hill Book Company, New York

    Google Scholar 

  232. Weatherburn CE (1927) Differential Geometry of Three Dimensions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  233. Whitaker S (1967) Diffusion and Dispersion in Porous Media. AIChE J 13(3):420-427

    Google Scholar 

  234. Whitaker S (1968) Introduction to Fluid Mechanics. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  235. Whitaker S (1969) Fluid Motion in Porous Media. Industrial and Engineering Chemistry. 61(12): 15-28

    Google Scholar 

  236. Whitaker S (1973) The Transport Equations for Multiphase Systems. Chem Eng Sci 28:139-147

    Google Scholar 

  237. Whitaker S (1985) A Simple Geometrical Derivation of the Spatial Averaging Theorem. Chemical Engineering Education, pp. 18-21 and pp. 50-52

    Google Scholar 

  238. Whitaker S (1992) The species mass jump condition at a singular surface. Chem Eng Sci 47(7):1677-1685

    MathSciNet  Google Scholar 

  239. Whitaker S (1999) The Method of Volume Averaging. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  240. White FM (1974) Viscous Fluid Flow. McGraw-Hill, New York

    MATH  Google Scholar 

  241. Willmore TJ (1961) An Introduction to Differential Geometry. Oxford University Press, Glasgow

    Google Scholar 

  242. Wright K, Cygan RT, Slater B (2001) Structure of the (1014) surfaces of calcite, dolmolite and magnesite under wet and dry conditions. Phys Chem Chem Phys 3:839-844

    Google Scholar 

  243. Yadigaroglu G, Lahey RT Jr (1976) On the Various Forms of the Conservation Equations in Two-Phase Flow. Int J Multiphase Flow 2:477-494

    MATH  Google Scholar 

  244. Young T (1805) An essay on the cohesion of fluids. Phil Trans Roy Soc London 95:65-87

    Google Scholar 

  245. Zaleski S (1999) Multiphase-Flow CFD with Volume of Fluid (VOF) Methods. In: Modelling and Computation of Multiphase Flows, Short Course, Zurich, Switzerland, March 8-12, 15B/17B:1-43.

    Google Scholar 

  246. Zapryanov Z, Tabakova S (1999) Dynamics of Bubbles, Drops and Rigid Particles. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  247. Zhang DZ, Prosperetti A (1994) Ensemble phase-average equations for bubbly flows. Phys Fluids 6(9):2956-2970

    MATH  MathSciNet  Google Scholar 

  248. Zhang DZ, Prosperetti A (1994) Averaged equations for inviscid disperse two-phase flow. J Fluid Mech 267:185-219

    MATH  MathSciNet  Google Scholar 

  249. Zhang DZ, Prosperetti A (1997) Momentum and Energy Equations for Disperse Two-Phase Flows and Their Closure for Dilute Suspensions. Int J Multiphase Flow 23(3):425-453

    MATH  Google Scholar 

  250. Zuber N, Findlay JA (1965) Average Volumetric Concentration i Two-Phase Flow Systems. J Heat Transfer 87:453-468

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakobsen, H.A. (2009). Multiphase Flow. In: Chemical Reactor Modeling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68622-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68622-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25197-2

  • Online ISBN: 978-3-540-68622-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics