Skip to main content

Heat Stress Promoters and Transcription Factors

  • Conference paper
Plant Promoters and Transcription Factors

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 20))

Abstract

The initial description of heat stress (hs)-induced gene activity using polytene chromosomes of Drosophila salivary glands (Ritossa 1962) was followed 12 years later by the detection of the corresponding heat stress proteins (HSP) (Tissieres et al. 1974) and progress toward cloning the Drosophila hs genes (for summaries, see Ashburner and Bonner 1979; Schlesinger et al. 1982). The explosive development of molecular stress biology in the following decade extended the investigations to all types of living organisms. In all cases the heat stress (hs) response was found to comprise a highly complex but transient reprogramming of cellular activities necessary to protect cells from extensive damage and to provide optimum conditions for recovery after the stress period. Results have been summarized in many reviews and books (Lindquist and Craig 1988; Morimoto et al. 1990; Nover et al. 1990; Nover 1991; Vierling 1991; Gething and Sambrook 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abravaya K, Phillips B, Morimoto RI (1991a) Heat shock-induced interactions of heat shock transcription factor and the human hsp70 promoter examined by in vivo footprinting. Mol Cell Biol 11: 586–592

    PubMed  CAS  Google Scholar 

  • Abravaya K, Phillips B, Morimoto RI (1991b) Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev 5: 2117–2127

    Article  PubMed  CAS  Google Scholar 

  • Abravaya K, Myers MP, Murphy SP, Morimoto RI (1992) The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6: 1153–1164

    Article  PubMed  CAS  Google Scholar 

  • Allen SP, Polazzi JO, Gierse JK, Easton AM (1992) Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J Bacteriol 174: 6938–6947

    CAS  Google Scholar 

  • Amin J, Mestril R, Schiller P, Dreano M, Voellmy R (1987) Organization of the Drosophila melanogaster hsp70 heat shock regulation unit. Mol Cell Biol 7: 1055–1062

    PubMed  CAS  Google Scholar 

  • Amin J, Ananthan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8: 3761–3769

    PubMed  CAS  Google Scholar 

  • Ananthan J, Goldberg AL, Voellmy R (1986) Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232: 522–524

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Bonner JJ (1979) The induction of gene activity in Drosophila by heat shock. Cell 17: 241–254

    Article  PubMed  CAS  Google Scholar 

  • Baler R, Welch WJ, Voellmy R (1992) Heat shock gene regulation by nascent polypeptides and denaturated proteins — hsp70 as a potential autoregulatory factor. J Cell Biol 117: 1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Baler R, Dahl G, Voellmy R (1993) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 13: 2486–2496

    PubMed  CAS  Google Scholar 

  • Baumann G, Raschke E, Bevan M, Schöffl F (1987) Functional analysis of sequences required for transcriptional activation of a soybean heat shock gene in transgenic tobacco plants. EMBO J 6: 1161–1166

    PubMed  CAS  Google Scholar 

  • Beckmann RP, Lovett M, Welch WJ (1992) Examining the function and regulation of hsp70 in cells subjected to metabolic stress. J Cell Biol 117: 1137–1150

    Article  PubMed  CAS  Google Scholar 

  • Bienz M (1984) Xenopus hsp70 genes are constitutively expressed in injected oocytes. EMBO J 3:2477–2483

    Google Scholar 

  • Bienz M (1986) A CCAAT box confers cell-type-specific regulation on the Xenopus hsp70 gene in oocytes. Cell 46: 1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Bienz M, Pelham HRB (1982) Expression of a Drosophila heat shock protein in Xenopus oocytes: conserved and divergent regulatory signals. EMBO J 1: 15831588

    Google Scholar 

  • Bienz M, Pelham HRB (1986) Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter. Cell 45: 753–760

    Article  PubMed  CAS  Google Scholar 

  • Blackman RK, Meselson M (1986) Interspecific nucleotide sequence comparisons used to identify regulatory and structural features of the Drosophila hsp82 gene. J Mol Biol 188: 499–516

    Article  PubMed  CAS  Google Scholar 

  • Bonner JJ, Heyward S, Fackenthal DL (1992) Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor. Mol Cell Biol 12: 1021–1030

    PubMed  CAS  Google Scholar 

  • Burley S, Petsko GA (1985) Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229: 23–28

    Article  PubMed  CAS  Google Scholar 

  • Caplan AJ, Cyr DM, Douglas MG (1992) YIJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell 71: 1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Carmo-Avides MD, Sunkel CE, Moradas-Ferreira P, Rodrigues-Pousada C (1990) Properties and partial characterization of the heat shock factor from Tetrahymerta pyriformis. Eur J Biochem 194: 331–336

    Article  Google Scholar 

  • Clos J, Westwood JT, Becker PB, Wilson S, Lambert K, Wu C (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63: 1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Craig EA, Gross CA (1991) Is hsp70 the cellular thermometer? Trends Biochem Sci 16: 135–140

    Article  PubMed  CAS  Google Scholar 

  • Cunniff NFA, Wagner J, Morgan WD (1991) Modular recognition of 5-base-pair DNA sequence motifs by human heat shock transcription factor. Mol Cell Biol 11: 3504–3514

    PubMed  CAS  Google Scholar 

  • Czarnecka E, Key JL, Gurley WB (1989) Regulatory domains of the Gmhsp17.5-E heat shock promoter of soybean. Mol Cell Biol 9: 3457–3463

    PubMed  CAS  Google Scholar 

  • Dang CV, Barrett J, Villa-Garcia M, Resar LMS, Kato GJ, Fearon ER (1991) Intracellular leucine zipper interactions suggest c-Myc hetero oligomerization. Mol Cell Biol 11: 954–962

    PubMed  CAS  Google Scholar 

  • DiDomenico BJ, Bugaisky GE, Lindquist S (1982a) The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31: 593603

    Google Scholar 

  • DiDomenico BJ, Bugaisky GE, Lindquist SS (1982b) Heat shock and recovery are mediated by different translational mechanisms. Proc Natl Acad Sci USA 79: 6181–6185

    Article  PubMed  CAS  Google Scholar 

  • Dingwall C, Laskey R (1992) The nuclear membrane. Science 258: 942–947

    Article  PubMed  CAS  Google Scholar 

  • Dostatni N, Lambert PE, Sousa R, Ham J, Howley PM, Janiv M (1991) The functional BPV-1E2 trans-activating protein can act as a repressor by preventing formation of the initiation complex. Genes Dev 5: 1657–1671

    Article  PubMed  CAS  Google Scholar 

  • Foulkes NS, Sassone-Corsi P (1992) More is better: activators and repressors from the same gene. Cell 68: 411–414

    Article  PubMed  CAS  Google Scholar 

  • Frydman J, Nimmesgern E, Erdjument-Bromage H, Wall JS, Tempst P, Hartl F-U (1992) Function in protein folding of TRiC, a cystosolic ring complex containing TCP-1 and structurally related subunits. EMBO J 11: 4767–4778

    PubMed  CAS  Google Scholar 

  • Fujita A, Kikuchi Y, Kuhara S, Misumi Y, Matsumoto S, Kobayashi H (1989) Domains of the Sf11 protein of yeast are homologous to myc oncoproteins or heat-shock transcription factor. Gene 85: 321–328

    Article  PubMed  CAS  Google Scholar 

  • Gallo GJ, Schuetz TJ, Kingston RE (1991) Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae. Mol Cell Biol 11: 281–288

    PubMed  CAS  Google Scholar 

  • Gallo GJ, Prentice H, Kingston RE (1993) Heat shock factor is required for growth at normal temperatures in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 13: 749–761

    PubMed  CAS  Google Scholar 

  • Gehring WJ (1987) Homeo boxes in the study of development. Science 236: 12451252

    Google Scholar 

  • Georgopoulos C (1992) The emergence of the chaperone machines. Trends Biochem Sci 17: 295–299

    Article  PubMed  CAS  Google Scholar 

  • Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature 355: 33–45

    Article  PubMed  CAS  Google Scholar 

  • Glass DJ, Polvere RJ, van der Ploeg LHT (1986) Conserved sequences and transcription of hsp70 gene family in Trypanosoma brucei. Mol Cell Biol 6: 4657–4666

    PubMed  CAS  Google Scholar 

  • Goff SA, Goldberg AL (1985) Production of abnormal proteins in E. coli stimulates transcription of Ion and other heat shock genes. Cell 41: 587–595

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Cone VC, Chandler VL (1992) Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev 6: 864–875

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb TM, Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72: 131–142

    Article  PubMed  CAS  Google Scholar 

  • Graham A, Papalopulu N, Krumlauf R (1989) The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57: 357–378

    Article  Google Scholar 

  • Grossniklaus U, Pearson RK, Gehring WJ (1992) The Drosophila sloppy paired locus encodes two proteins involved in segmentation that show homology to mammalian transcription factors. Genes Dev 6: 1030–1052

    Article  PubMed  CAS  Google Scholar 

  • Gurley WB, Key JL (1991) Transcriptional regulation of the heat-shock response: a plant perspective. Biochemistry 30: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Häcker U, Grossniklaus U, Gehring WJ, Jäckle H (1992) Developmentally regulated Drosophila gene family encoding the fork head domain. Proc Natl Acad Sci USA 89: 8754–8758

    Article  PubMed  Google Scholar 

  • Härd T, Kellenbach E, Boelens R, Maler BA, Dahlman K, Freedman LP, CarlstedtDuke J, Yamamoto KR, Gustafsson J-A, Kaptein R (1990) Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249: 157–160

    Article  PubMed  Google Scholar 

  • Hartl FU, Martin J, Neupert W (1992) Protein folding in the cell — the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct 21: 293–322

    Article  PubMed  CAS  Google Scholar 

  • Horwitz J (1992) u-Crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89:10449–10453

    Google Scholar 

  • Hu JC, O’Shea EK, Kim PS, Sauer RT (1990) Sequence requirements for coiled-coils. Analysis with lambda repressor-GCN4 leucine zipper fusions. Science 250: 1400–1403

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen BK, Pelham HRB (1991) A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J 10: 369–375

    PubMed  CAS  Google Scholar 

  • Jentsch St (1992) The ubiquitin-conjugation system. Annu Rev Genet 26:177–205 Katagiri F, Chua NH (1992) Plant transcription factors — present knowledge and future challenges. Trends Genet 8: 22–27

    Google Scholar 

  • Kay RJ, Boissy RJ, Russnak RH, Candido EPM (1986) Efficient transcription of a Caenorhabditis elegans heat shock gene pair in mouse fibroblasts is dependent on multiple promoter elements which can function bidirectionally. Mol Cell Biol 6: 3134–3143

    PubMed  CAS  Google Scholar 

  • Kingston RE, Schuetz TJ, Larin Z (1987) Heat-inducible human factor that binds to a human hsp70 promoter. Mol Cell Biol 7: 1530–1534

    PubMed  CAS  Google Scholar 

  • Kobayashi N, McEntee K (1990) Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87: 6550–6554

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, McEntee K (1993) Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol 13: 248–256

    PubMed  CAS  Google Scholar 

  • Krens FA, Molendijk L, Wullems GI, Schilperpoort RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296: 72–74

    Article  CAS  Google Scholar 

  • Lamb P, McKnight SL (1991) Diversity and specificity in transcriptional regulation — the benefits of heterotypic dimerization. Trends Biochem Sci 16: 417–422

    Article  PubMed  CAS  Google Scholar 

  • Landschulz WH, Johnson PF, McKnight StL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 17591764

    Google Scholar 

  • Larson JS, Schuetz TJ, Kingston RE (1988) Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335: 372–375

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677 Lis J, Wu C ( 1992 ) Heat shock factor. In: McKnight SL and Yamamoto KR (eds)

    Google Scholar 

  • Transcriptional regulation, Vol 2. Cold Spring Harbor Press, Cold Spring Harbor, pp 907–930

    Google Scholar 

  • Lovejoy B, Choe S, Cascio D, McRorie DK, DeGrado WF, Eisenberg D (1993) Crystal structure of a synthetic triple-stranded a-helical bundle. Science 259: 1288–1293

    Article  PubMed  CAS  Google Scholar 

  • Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB (1991) Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352: 497–505

    Article  PubMed  CAS  Google Scholar 

  • McCarty JS, Walker GC (1991) Dnak as a thermometer: threonine-199 is the site of autophosphorylation and is critical for ATPase activity. Proc Natl Acad Sci USA 88: 9513–9517

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Murata K, Kubota H, Yamamoto A, Matsushiro A, Morita T (1992) Cloning of a cDNA encoding the Tcp-1 (t complex polypeptide-1) homologue of Arabidopsis thaliana. Gene 122: 381–382

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI (1993) Cells in stress-transcriptional activation of heat shock genes. Science 259: 1409–1410

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI, Tissieres A, Georgopoulos C (eds) (1990) Stress proteins in biology and medicine. Cold Spring Harbor. Cold Spring Harbor Press

    Google Scholar 

  • Mosser DD, Kotzbauer PT, Sarge KD, Morimoto RI (1990) In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that effect protein conformation. Proc Natl Acad Sci USA 87: 3748–3752

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Renkawitz R (1991) The glucocorticoid receptor. Biochim Biophys Acta 1088: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Nakai A, Morimoto RI (1993) Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol Cell Biol 13: 1983–1997

    PubMed  CAS  Google Scholar 

  • Nieto-Sotelo J, Wiederrecht G, Okuda A, Parker CS (1990) The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62: 807–817

    Article  PubMed  CAS  Google Scholar 

  • Nover L (1987) Expression of heat shock genes in homologous and heterologous systems. Enzyme Microb Technol 9: 130–144

    Article  CAS  Google Scholar 

  • Nover L (ed) (1991) Heat shock response. CRC Press, Boca Raton

    Google Scholar 

  • Nover L, Munsche D, Ohme K, Scharf K-D (1986) Ribosome biosynthesis in heat shocked tomato cell cultures I. Ribosomal RNA. Eur J Biochem 160: 297–304

    Google Scholar 

  • Nover L, Scharf KD, Neumann D (1989) Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol 9: 1298–1308

    PubMed  CAS  Google Scholar 

  • Nover L, Neumann D, Scharf KD (eds) (1990) Heat shock and other stress response systems of plants. Results and problems of cell differentiation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • O’Shea EK, Klemm JD, Kim PS, Alber T (1991) X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254: 539–544

    Article  PubMed  Google Scholar 

  • Palleros DR, Welch WJ, Fink AL (1991) Interaction of hsp70 with unfolded proteins: effects of temperature and nucleotides on the kinetics of binding. Proc Natl Acad Sci USA 88: 5719–5723

    Article  PubMed  CAS  Google Scholar 

  • Palleros DR, Reid KL, McCarty JS, Walker GC, Fink AL (1992) DnaK, hsp73, and their molten globules — two different ways heat shock proteins respond to heat. J Biol Chem 267: 5279–5285

    PubMed  CAS  Google Scholar 

  • Paluh JL, Yanofsky Ch (1991) Characterization of Neurospora CPCI, a bZIP DNA-binding protein that does not require aligned heptad leucines for dimerization. Mol Cell Biol 11: 935–944

    PubMed  CAS  Google Scholar 

  • Parker CS, Topol J (1984a) A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp70 gene. Cell 37: 273–283

    Article  PubMed  CAS  Google Scholar 

  • Parker CS, Topol J (1984b) A Drosophila RNA polymerase II transcription factor contains a promoter-region-specific DNA-binding activity. Cell 36: 357–369

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Sauer RT (1989) Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev 3: 1226–1232

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Sanchez Y, Stitzel JD, Lindquist S (1991) Hsp104 is a highly conserved protein with 2 essential nucleotide-binding sites. Nature 353: 270–273

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1982) A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene. Cell 30: 517–528

    Article  PubMed  CAS  Google Scholar 

  • Peteranderl R, Nelson HCM (1992) Trimerization of heat shock transcription factor by a triple-stranded-helical coiled-coil. Biochemistry 31: 12272–12276

    Article  PubMed  CAS  Google Scholar 

  • Picard D, Khursheed B, Garabedian MJ, Fortin MG, Lindquist S, Yamamoto KR (1990) Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature 348:166— 168

    Google Scholar 

  • Price BD, Calderwood SK (1991) Cat+ is essential for multistep activation of the heat shock factor in permeabilized cells. Mol Cell Biol 11: 3365–3368

    PubMed  CAS  Google Scholar 

  • Raabe T, Manley JL (1991) A human homologue of the Escherichia-coli DnaJ heat shock protein. Nucleic Acids Res 19: 6645

    Article  PubMed  CAS  Google Scholar 

  • Rabindran SK, Giorgi G, Clos J, Wu C (1991) Molecular cloning and expression of human heat shock factor. Proc Natl Acad Sci USA 88: 6906–6910

    Article  PubMed  CAS  Google Scholar 

  • Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C (1993) Regulation of heat shock factor trimerization: role of a conserved leucine zipper. Science 259: 230–234

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen R, Benvegnu D, O’Shea EK, Kim PS, Alber T (1991) X-ray scattering indicates that the leucine zipper is a coiled coil. Proc Natl Acad Sci USA 88: 561–564

    Article  PubMed  CAS  Google Scholar 

  • Rehberger P, Rexin M, Gehring U (1992) Heterotetrameric structure of the human progesterone receptor. Proc Natl Acad Sci USA 89: 8001–8005

    Article  PubMed  CAS  Google Scholar 

  • Rieping M, Schöffl F (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol Gen Genet 231: 226–232

    Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18: 571–573

    Article  CAS  Google Scholar 

  • Rochester DE, Winer JA, Shah DM (1986) The structure and expression of maize genes encoding the major heat shock protein, hsp70. EMBO J 5: 451–458

    PubMed  CAS  Google Scholar 

  • Ruvkun G, Finney M (1991) Regulation of transcription and cell identity by POU domain proteins. Cell 64: 457–478

    Article  Google Scholar 

  • Sanchez ER (1990) Hsp56 — a novel heat shock protein associated with untransformed steroid receptor complexes. J Biol Chem 265: 22067–22070

    PubMed  CAS  Google Scholar 

  • Sarge KD, Zimarino V, Holm K, Wu C, Morimoto RI (1991) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA binding ability. Genes Dev 5: 1902–1911

    Article  PubMed  CAS  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13: 1392–1407

    PubMed  CAS  Google Scholar 

  • Scharf K-D, Rose S, Zott W, Schöffl F, Nover L (1990) Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J 9: 4495–4501

    PubMed  CAS  Google Scholar 

  • Scharf K-D, Rose S, Thierfelder J, Nover L (1993) Nucleotide sequence of the cDNA clones encoding tomato heat stress transcription factors. Plant Physiol 102: 1355–1356

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Davis RW (1992) HD-Zip proteins: members of an Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci USA 89: 3894–3898

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger MJ, Ashburner M, Tissieres A (eds) (1982) Heat shock. From bacteria to man. Cold Spring Harbor Lab, Cold Spring Harbor, NY

    Google Scholar 

  • Schöffl F, Raschke E, Nagao RT (1984) The DNA sequence analysis of soybean heat-shock genes and identification of possible regulatory promoter elements. EMBO J 3: 2491–2497

    PubMed  Google Scholar 

  • Schuermann M, Hunter JB, Hennig G, Muller R (1991) Non-leucine residues in the leucine repeats of fos and jun contribute to the stability and determine the specificity of dimerization. Nucleic Acids Res 19: 739–746

    Article  PubMed  CAS  Google Scholar 

  • Schuetz TJ, Gallo GJ, Scheldon L, Tempst P, Kingston RE (1991) Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc Natl Acad Sci USA 88: 6911–6915

    Article  PubMed  CAS  Google Scholar 

  • Schwabe JWR, Neuhaus D, Rhodes D (1990) Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 348: 458–461

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA (1992) TATA-binding protein is a class-less factor. Cell 68: 819–821

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Thomas JO (1992) The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate. Mol Cell Biol 12: 2186–2192

    PubMed  CAS  Google Scholar 

  • Shuey DJ, Parker CS (1986) Binding of Drosophila heat-shock gene transcription factor to the hsp70 promoter. J Biol Chem 261: 7934–7940

    PubMed  CAS  Google Scholar 

  • Sistonen L, Sarge KD, Phillips B, Abravaya K, Morimoto RI (1992) Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol 12: 4104–4111

    PubMed  CAS  Google Scholar 

  • Sorger PK (1990) Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62: 783–805

    Article  Google Scholar 

  • Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65: 363–366

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK, Nelson HCM (1989) Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59: 807–813

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK, Pelham HRB (1987) Cloning and expression of a gene encoding hsc73, the major hsp70 — like protein in unstressed rat cells. EMBO J 6: 993–998

    PubMed  CAS  Google Scholar 

  • Sorger PK, Pelham HRB (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54: 855–864

    Article  PubMed  CAS  Google Scholar 

  • Sorger PK, Lewis MJ, Pelham HRB (1987) Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Squires C, Squires CL (1992) The Clp proteins: proteolysis regulators or molecular chaperones? J Bacteriol 174: 1081–1085

    PubMed  CAS  Google Scholar 

  • Stone DE, Craig EA (1990) Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol Cell Biol 10: 1622–1632

    PubMed  CAS  Google Scholar 

  • Stragier P, Parsol C, Bouvier J (1985) Two functional domains conserved in major and alternate bacterial sigma factors. FEBS Lett 187: 11–15

    Article  PubMed  CAS  Google Scholar 

  • Swindle J, Ajioka J, Eisen H, Sanwal B, Jacquemot C, Browder Z, Buck G (1988) The genomic organization and transcription of the ubiquitin genes of Trypanosoma cruzi. EMBO J 7: 1121–1127

    PubMed  CAS  Google Scholar 

  • Tai P-K K, Albers MW, Chang H, Faber LE, Schreiber StL (1992) Association of a 59-kilodalton immunophilin with the glucocorticoid receptor complex. Science 256: 1315–1318

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Komeda Y (1989) Characterization of two genes encoding small heat-shock proteins in Arabidopsis thaliana. Mol Gen Genet 219: 365–372

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Lai J-S, Herr W (1992) Promoter-selective activation domains in Oct-1 and Oct-2 direct differential activation of an snRNA and mRNA promoter. Cell 68: 755–767

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, deVicente MC, Bonierbale MW, Broun P, Fulton TM, Giovanonni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Röder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160

    PubMed  CAS  Google Scholar 

  • Thomas GH, Elgin SCR (1988) Protein-DNA architecture of the DNase I hyper- sensitive region of the Drosophila hsp26 promoter. EMBO J 7: 2191–2201

    PubMed  CAS  Google Scholar 

  • Tissières A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of D. melanogaster. Relation to chromosome puffs. J Mol Biol 84: 389–398

    Google Scholar 

  • Töpfer R, Schell J, Steinbiss HH (1988) Versatile cloning vectors for transient gene expression and direct gene transfer in plant cells. Nucleic Acids Res 16: 8725

    Article  PubMed  Google Scholar 

  • Topol J, Ruden DM, Parker CS (1985) Sequences required for in vitro transcriptional activation of a Drosopila hsp70 gene. Cell 42: 527–537

    Article  PubMed  CAS  Google Scholar 

  • Treuter E, Nover L, Ohme K, Scharf K-D (1993) Promoter specificity and deletion analysis of three tomato heat stress transcription factors. Mol Gen Genet 240: 113–125

    Article  PubMed  CAS  Google Scholar 

  • Tropsha A, Bowen JP, Brown FK, Kizer JS (1991) Do interhelical side chain-backbone hydrogen bonds participate in formation of leucine zipper coiled coils? Proc Natl Acad Sci USA 88: 9488–9492

    Article  PubMed  CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579–620

    Article  CAS  Google Scholar 

  • Weigel D, Jäckle H (1990) The fork head domain: a novel DNA binding motif of eukaryotic transcription factors. Cell 63: 455–456

    Article  PubMed  CAS  Google Scholar 

  • Westwood JT, Wu C (1993) Activation of Drosophila heat shock factor: conformational change associated with a monomer to trimer transition. Mol Cell Biol (in press)

    Google Scholar 

  • Westwood JT, Clos J, Wu C (1991) Stress-induced oligomerization and chromosomal relocalization of heat shock factor. Nature 353: 822–827

    Article  PubMed  CAS  Google Scholar 

  • Wiederrecht G, Seto D, Parker CS (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54: 841–853

    Article  PubMed  CAS  Google Scholar 

  • Wieser R, Adam G, Wagner A, Schuller C, Marchler G, Ruis H, Krawiec Z, Bilinski T (1991) Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase-T of Saccharomyces cerevisiae. J Biol Chem 266: 12406–12411

    PubMed  CAS  Google Scholar 

  • Williams ME, Foster R, Chua NH (1992) Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell 4: 485–496

    PubMed  CAS  Google Scholar 

  • Wu C (1984a) Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature 311: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Wu C (1984b) Two protein-binding sites in chromatin implicated in the activation of heat shock genes. Nature 309: 229–234

    Article  PubMed  CAS  Google Scholar 

  • Wu C (1985) An exonuclease protection assay reveals heat shock element and TATA box DNA-binding proteins in crude nuclear extracts. Nature 317: 8487

    Article  Google Scholar 

  • Xiao H, Perisic O, Lis JT (1991) Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64: 585–593

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK, Shi J, Bressan RA, Hasegawa PM (1993) Expression of an Atriplex nummularia gene encoding a protein homologous to the bacterial molecular chaperone Dna J. Plant Cell 5: 341–349

    CAS  Google Scholar 

  • Zimarino V, Wu C (1987) Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. Nature 327: 727–730

    Article  PubMed  CAS  Google Scholar 

  • Zimarino V, Wilson S, Wu C (1990) Antibody-mediated activation of Drosophila heat shock factor in vitro. Science 249: 546–549

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scharf, KD., Materna, T., Treuter, E., Nover, L. (1994). Heat Stress Promoters and Transcription Factors. In: Nover, L. (eds) Plant Promoters and Transcription Factors. Results and Problems in Cell Differentiation, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48037-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48037-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22304-8

  • Online ISBN: 978-3-540-48037-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics