Skip to main content

Actin Filament Networks

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 32))

Abstract

Since its discovery as an essential component of the contractile machinery of striated muscle, the ability of purified actin to increase the viscosity of its aqueous solutions has been the object of many studies. Biochemical and biophysical studies soon established that the chemical stimuli, usually addition of monovalent or divalent salts, that increased viscosity did so coincident with promoting the polymerization of globular (G-) actin into filamentous polymers (F-actin). Defining how the properties of the individual filaments and their interactions with each other account for the macroscopic mechanical properties of F-actin solutions is an active area of research, with several fundamental questions remaining unanswered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe S, Maruyama K (1973) Effect of a-actinin on F-actin: a dynamic viscoelastic study. J Biochem 73: 1205–1210

    PubMed  CAS  Google Scholar 

  • Abe SI, Maruyama K (1974) Dynamic viscoelastic study of acto-heavy meromyosin in solution. Biochim Biophys Acta 160: 160–174

    Google Scholar 

  • Almdal K, Dyre J, Hvidt S, Kramer 0 (1993) Towards a phenomenological definition of the term gel. Poly Gels Networks 1: 5–17

    CAS  Google Scholar 

  • Banno Y, Nakashima S, Ohzawa M, Nozawa Y (1996) Differential translocation of phospholipase C isozymes to integrin-mediated cytoskeletal complexes in thrombin-stimulated human platelets. J Biol Chem 271: 14989–14994

    Article  PubMed  CAS  Google Scholar 

  • Brotschi E, Hartwig J, Stossel T (1978) The gelation of actin by actin-binding protein. J Biol Chem 253: 8988–8993

    PubMed  CAS  Google Scholar 

  • Brown KD, Binder LI (1992) Identification of the intermediate filament-associated protein gyronemin as filamin Implications for a novel mechanism of cytoskeletal interaction. J Cell Sci 102: 19–30

    PubMed  CAS  Google Scholar 

  • Buxbaum RE, Dennerll T, Weiss S, Heidemann SR (1987) F-actin and microtubule suspensions as indeterminate fluids. Science 235: 1511–1514

    Article  PubMed  CAS  Google Scholar 

  • Cary RB, Klymkowsky MW, Evans RM, Domingo A, Dent JA, Backhus LE (1994) Vimentin’s tail interacts with actin-containing structures in vivo. J Cell Sci 107: 1609–1622

    PubMed  CAS  Google Scholar 

  • Coppin C, Leavis P (1992) Quantitation of liquid-crystaline ordering in F-actin solutions. Biophys J 63: 794–807

    Article  PubMed  CAS  Google Scholar 

  • Cunningham CC, Gorlin JB, Kwiatkowski DJ, Hartwig JH, Janmey PA, Byers HR, Stossel TP (1992) Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255: 325–327

    Article  PubMed  CAS  Google Scholar 

  • Cunningham CC, Leclerc N, Flanagan LA, Lu M, Janmey PA, Kosik KS (1997) Microtubuleassociated protein 2c reorganizes both microtubules and microfilaments into distinct cytological structures in an actin-binding protein-280-deficient melanoma cell line. J Cell Biol 136: 845–857

    Article  PubMed  CAS  Google Scholar 

  • deGennes PG (1976) Dynamics of entangled polymer solutions I The Rouse model. Macromolecules. 9: 587–593

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Ebashi S, Ebashi F, Maruyama K (1964) A new protein factor promoting contraction of actomyosin. Nature 203: 645–646

    Article  PubMed  CAS  Google Scholar 

  • Eichinger L, Koppel B, Noegel AA, Schleicher M, Schliwa M, Weijer K, Witke W, Janmey PA (1996) Mechanical perturbation elicits a phenotypic difference between Dictyostelium wild-type cells and cytoskeletal mutants. Biophys J 70: 1054–1060

    Article  PubMed  CAS  Google Scholar 

  • Evans E (1993) New physical concepts for cell amoeboid motion. Biophys J 64: 1306–1322

    Article  PubMed  CAS  Google Scholar 

  • Ferry J (1980) Viscoelastic properties of polymers. John Wiléy, New York

    Google Scholar 

  • Fisher PR, Noegel AA, Fechheimer M, Rivero F, Prassler J, Gerisch G (1997) Photosensory and thermosensory responses in Dictyostelium slugs are specifically impaired by absence of the F-actin cross-linking gelation factor (abp-120). Curr Biol 7: 889–892

    Article  PubMed  CAS  Google Scholar 

  • Flory P (1953) Principles of polymer chemistry Cornell University Press, Ithaca

    Google Scholar 

  • Foisner R,Wiche T (1991) Intermediate filament-associated proteins. Curr Opin Cell Biol 3: 75–81

    Article  PubMed  CAS  Google Scholar 

  • Forgacs G (1995) On the possible role of cytoskeletal filamentous networks in intracellular signaling: an approach based on percolation. J Cell Sci 108: 2131–2143

    PubMed  CAS  Google Scholar 

  • Furukawa R, Kundra R, Fechheimer M (1993) Formation of liquid crystals from actin filaments. Biochemistry 32: 12346–12352

    Article  PubMed  CAS  Google Scholar 

  • Gittes F, MacKintosh F (1998) Dynamic shear modulus of a semiflexible polymer network. Phys Rev E 58: R1241 - R1244

    Article  CAS  Google Scholar 

  • Glogauer M, Arora P, Yao G, Sokholov I, Ferrier J, Mcculloch C (1997) Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J Cell Sci 110: 11–21

    PubMed  CAS  Google Scholar 

  • Glogauer M, Arora P, Chou D, Janmey P, Downey G, McCulloch CAG (1998) The role of ABP-280 in integrin-mediated mechanoprotection. J Biol Chem 273: 1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Goldman RD, Khuon S, Chou YH, Opal P, Steinert PM (1996) The function of intermediate filaments in cell shape and cytoskeletal integrity. J Cell Biol 134: 971–983

    Article  PubMed  CAS  Google Scholar 

  • Goldmann WH, Senger R, Isenberg G (1994) Analysis of filamin-actin binding and cross-linking/bundling by kinetic method. Biochem Biophys Res Commun 203: 338–343

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez M, Cambiazo V, Maccioni RB (1998) The interaction of Mip-90 with microtubules and actin filaments in human fibroblasts. Exp Cell Res 239: 243–253

    Article  PubMed  CAS  Google Scholar 

  • Griffith LM, Pollard TD (1982) The interaction of actin filaments with microtubules and microtubule-associated proteins. J Biol Chem 257: 9143–9151

    PubMed  CAS  Google Scholar 

  • Grondin P, Plantavid M, Sultan C, Breton M, Mauco G, Chap H (1991) Interaction of pp60csrc phospholipase C, inositol-lipid, and diacyglycerol kinases with the cytoskeletons of thrombin-stimulated platelets. J Biol Chem 266: 15705–15709

    PubMed  CAS  Google Scholar 

  • Hartwig J, Stossel T (1975) Isolation and properties of actin, myosin, and a new actin-binding protein in rabbit alveolar macrophages. J Biol Chem 250: 5696–5705

    PubMed  CAS  Google Scholar 

  • Hartwig J, Stossel T (1981) The structure of actin-binding protein molecules in solution and interacting with actin filaments. J Mol Biol 145: 563–581

    Article  PubMed  CAS  Google Scholar 

  • Hartwig J, Tyler J, Stossel T (1980) Actin-binding protein promotes the bipolar and perpendicular branching of actin filaments. J Cell Biol 87: 841–848

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH, Stossel TP (1979) Cytochalasin B and the structure of actin gels. J Mol Biol 134: 539–554

    Article  PubMed  CAS  Google Scholar 

  • Hatano S, Oosawa F (1966) Isolation and characterization of plasmodium actin. Biochim Biophys Acta 127: 488–498

    Article  PubMed  CAS  Google Scholar 

  • Hinchliffe Ka, Irvine Rf, Divecha N (1996) Aggregation-dependent, integrin-mediated increases in cytoskeletally associated PtdinsP2 (4,5) levels in human platelets are controlled by translocation of Ptdlns 4-P 5-kinase C to the cytoskeleton. Embo J 15: 6516–6524

    PubMed  CAS  Google Scholar 

  • Hinner B, Tempel M, Sackmann E, Kroy K, Frey E (1998) Entanglement, elasticity and viscous relaxation of actin solutions. Phys Rev Lett 81: 2614–2617

    Article  CAS  Google Scholar 

  • Isambert H, Maggs A (1996) Dynamics and rheology of actin solutions. Macromolecules 29: 1036–1040

    Article  CAS  Google Scholar 

  • Janmey PA (1998) The cytoskeleton and cell signaling-component localization and mechanical coupling. Physiol Rev 78: 763–781

    PubMed  CAS  Google Scholar 

  • Janmey PA, Lind SE, Yin HL, Stossel TP (1985) Effects of semi-dilute actin solutions on the mobility of fibrin protofibrils during clot formation. Biochim Biophys Acta 841: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Peetermans J, Zaner KS, Stossel TP, Tanaka T (1986) Structure and mobility of actin filaments as measured by quasielastic light scattering, viscometry, and electron microscopy. J Biol Chem 261: 8357–8362

    PubMed  CAS  Google Scholar 

  • Janmey PA, Hvidt S, Peetermans J, Lamb J, Ferry JD, Stossel TP (1988) Viscoelasticity of F-actin and F-actin/gelsolin complexes. Biochemistry 27: 8218–8227

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Hvidt S, Lamb J, Stossel TP (1990) Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature 345: 89–92

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Lamb JA, Ezzell RM, Hvidt S, Lind SE (1992) Effects of actin filaments on fibrin clot structure and lysis. Blood 80: 928–936

    PubMed  CAS  Google Scholar 

  • Janmey PA, Hvidt S, Kas J, Lerche D, Maggs A, Sackmann E, Schliwa M, Stossel TP (1994) The mechanical properties of actin gels Elastic modulus and filament motions. J Biol Chem 269: 32503–32513

    PubMed  CAS  Google Scholar 

  • Janmey PA, Stossel TP, Allen PG (1998) Deconstructing gelsolin-identifying sites that mimic or alter binding to actin and phosphoinositides. Chem Biol 5: 81–85

    Article  Google Scholar 

  • Janssen KP, Eichinger L, Janmey PA, Noegel AA, Schliwa M, Witke W, Schleicher M (1996) Viscoelastic properties of F-actin solutions in the presence of normal and mutated actin-binding proteins. Arch Biochem Biophys 325: 183–189

    Article  PubMed  CAS  Google Scholar 

  • Jen C, McIntire L, Bryan J (1982) The viscoelastic properties of actin solutions. Arch Biochem Biophys 216: 126–132

    Article  PubMed  CAS  Google Scholar 

  • Kane RE (1976) Actin polymerization and interaction with other proteins in temperature induced gelation of sea urchin egg extracts. J Cell Biol 71: 704–714

    Article  PubMed  CAS  Google Scholar 

  • Käs J, Strey H, Sackmann E (1994) Direct imaging of reptation for semiflexible actin filaments. Nature 368: 226–229

    Article  PubMed  Google Scholar 

  • Kasai M, Kawashima H, Oosawa F (1960) Structure of F-actin solutions. J Polymer Sci XLIV: 51–69

    Google Scholar 

  • Kawamura M, Maruyama K (1972) Length distribution of F-actin transformed from Mg-polymer. Biochim Biophys Acta 267: 422–434

    Article  PubMed  CAS  Google Scholar 

  • Kerst A, Chmielewski C, Livesay C, Buxbaum RE, Heidemann SR (1990) Liquid crystal domains and thixotropy of filamentous actin suspensions. Proc Natl Acad Sci USA 87: 4241–4245

    Article  PubMed  CAS  Google Scholar 

  • Kroy K, Frey E (1996) Force-extension relation and plateau modulus for wormlike chains. Phys Rev Lett 77: 306–309

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman PA, Ellis J, Critchley DR, Bagshaw CR (1994) The kinetics of the interaction between the actin-binding domain of alpha-actinin and F-actin. FEBS Lett 339: 297–301

    Article  PubMed  CAS  Google Scholar 

  • Lestourgeon WM, Forer A, Yang YZ, Bertram JS, Pusch HP (1975) Contractile proteins Major components of nuclear and chromosome non-histone proteins. Biochim Biophys Acta 379: 529–552

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Forscher P (1993) Cytoskeletal remodeling during growth cone-target interactions. J Cell Biol 121: 1369–1383

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi K, Li B, Ip W, Tao T (1997) Association of calponin with desmin intermediate filaments. J Biol Chem 272: 22662–2266

    Article  PubMed  CAS  Google Scholar 

  • MacKintosh F, Käs J, Janmey P (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75: 4425–4428

    Article  PubMed  CAS  Google Scholar 

  • Mackintosh FC, Janmey PA (1997) Actin gels. Curr Opin Solid State Mater Sci 2: 350–357

    Article  CAS  Google Scholar 

  • Maggs AC (1997) Two plateau moduli for actin gels. Phys Rev A 55: 7396–7400

    CAS  Google Scholar 

  • Magri E, Zaccarini M, Grazi E (1978) The interaction of histone and protamine with actin. Biochem Biophys Res Commun 82: 1207–1210

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Kaibara M, Fukada E (1974) Rheology of actin I Network of F-actin in solution. Biochim Biophys Acta 371: 20–29

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Abe S, Ishii T (1975) Dynamic viscoelastic study of the effect of beta-actinin on theinteraction between F-actin and heavy meromyosin. J Biochem 77: 131–136

    PubMed  CAS  Google Scholar 

  • Matsudaira P (1994) Actin crosslinking proteins at the leading edge. Semin Cell Biol 5: 165–174

    Article  PubMed  CAS  Google Scholar 

  • Meyer R, Aebi U (1990) Bundling of actin filaments by a-actinin depends on its molecular length. J Cell Biol 110: 2013–2024

    Article  PubMed  CAS  Google Scholar 

  • Miki NT, Oosawa F (1969) An actin-like protein of the sea urchin eggs I Its interaction with myosin from rabbit striated muscle. Exp Cell Res 56: 224–232

    Article  Google Scholar 

  • Mimura N, Asano A (1978) Actin-related gelation of Ehrlich tumour cell extracts is reversibly inhibited by low concentrations of Cat’. Nature 272: 273–276

    Article  PubMed  CAS  Google Scholar 

  • Morse D (1998) Viscoelasticity of tightly entangled solutions of semiflexible polymers. Phys Rev E 58: R1237 - R1240

    Article  CAS  Google Scholar 

  • Muller O, Gaub H, Baermann M, Sackmann E (1991) Viscoelastic moduli of sterically and chemically cross-linked actin networks in the dilute to semidilute regime–measurements by an oscillating disk rheometer. Macromolecules 24: 3111–3120

    Article  Google Scholar 

  • Nahas N, Plantavid M, Mauco G, Chap H (1989) Association of phosphatidylinositol kinase and phosphatidylinositol 4-phosphate kinase activities with the cytoskeleton in human platelets. FEBS Lett 264: 30–34

    Article  Google Scholar 

  • Niederman R,Amrein PC, Hartwig JH (1983) Three-dimensional structure of actin filaments and of an actin gel made with actin-binding protein. J Cell Biol 96: 1400–1403

    Article  PubMed  CAS  Google Scholar 

  • Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci 51: 627–659

    Article  CAS  Google Scholar 

  • Perkins TT, Smith DE, Chu S (1994) Direct observation of tube-like motion of a single chain. Science 264: 819–822

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Shelton E, Weihing RR, Korn ED (1970) Ultrastructural characterization of F-actin isolated from Acanthamoeba castellanii and identification of cytoplasmic filaments as F-actin by reaction with rabbit heavy meromyosin. J Mol Biol 50: 91–97

    Article  PubMed  CAS  Google Scholar 

  • Rivero F, Koppel B, Peracino B, Bozzaro S, Siegert F, Weijer CJ, Schleicher M, Albrecht R, Noegel AA (1996) The role of the cortical cytoskeleton–f-actin crosslinking proteins protect against osmotic stress, ensure cell size, cell shape and motility, and contribute to phagocytosis and development. J Cell Sci 109: 2679–2691

    PubMed  CAS  Google Scholar 

  • Ruddies R, Goldmann WH, Isenberg G, Sackmann E (1993) The viscoelastic moduli of actin/filamin solutions: a micro-rheologic study. Biochem Soc Trans 21: 37S

    Google Scholar 

  • Satcher RL Jr, Dewey CF Jr (1996) Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys J 71: 109–118

    Article  PubMed  Google Scholar 

  • Sato M, Schwarz WH, Pollard TD (1987) Dependence of the mechanical properties of actin/ alpha-actinin gels on deformation rate. Nature 325: 828–830

    Article  PubMed  CAS  Google Scholar 

  • Schindl M, Wallraff E, Deubzer B, Witke W, Gerisch G, Sackmann E (1995) Cell-substrate interactions and locomotion of Dictyostelium wild-type and mutants defective in three cytoskeletal proteins: a study using quantitative reflection interference contrast microscopy. Biophys J 68: 1177–1190

    Article  PubMed  CAS  Google Scholar 

  • Schmalz D, Kalkbrenner F, Hucho F, Buchner K (1996) Transport of protein kinase C a into the nucleus requires intact cytoskeleton while the transport of a protein containing a canonical nuclear localization signal does not. J Cell Sci 109: 2401–2406

    PubMed  CAS  Google Scholar 

  • Sheils CA, Käs J, Travassos W, Allen PG, Janmey PA, Wohl ME, Stossel TP (1996) Actin filaments mediate DNA fiber formation in chronic inflammatory airway disease. Am J Pathol 148: 919–927

    PubMed  CAS  Google Scholar 

  • Steinmetz M, Goldie K, Aebi U (1997) A correlative analysis of actin filament assembly, structure and dynamics. J Cell Biol 138: 559–574

    Article  PubMed  CAS  Google Scholar 

  • Stossel TP (1990) How cells crawl. Am Sci 78: 408–423

    Google Scholar 

  • Stossel TP (1994) The machinery of cell crawling. Sci Am 271: 54–63

    Article  PubMed  CAS  Google Scholar 

  • Stossel TP, Hartwig JH (1976) Interaction of actin, myosin, and a new actin-binding protein of rabbit pulmonary macrophages II Role in cytoplasmic movement and phagocytosis. J Cell Biol 68: 602–614

    Article  PubMed  CAS  Google Scholar 

  • Straub FB (1942) Actin. Stud Szeged 2: 3–15

    CAS  Google Scholar 

  • Straub FB, Feuer G (1950) Adenosinetriphosphate the functional group of actin. Biochim Biophys Acta 4: 455–470

    Article  CAS  Google Scholar 

  • Suzuki A, Yamazaki M, Ito T (1996) Polymorphism of F-actin assembly 1 A quantitative phase diagram of F-actin. Biochemistry 35: 5238–5244

    Article  PubMed  CAS  Google Scholar 

  • Tang JX, Janmey PA (1996) The polyelectrolyte nature of F-actin and the mechanism of actin bundle formation J Biol Chem 271: 8556–8563

    CAS  Google Scholar 

  • Tang JX, Ito T, Tao T, Traub P, Janmey PA (1997) Opposite effects of electrostatics and steric exclusion on bundle formation by F-actin and other filamentous polyelectrolytes. Biochemistry 36: 12600–12607

    Article  PubMed  CAS  Google Scholar 

  • Tang JX, Janmey PA, Stossel TP, Ito T (1999) Thiol oxidation of actin produces dimers that enhance the elasticity of the F-actin network. Biophys J 76: 2208–2215

    Article  PubMed  CAS  Google Scholar 

  • Tempel M, Isenberg G, Sackmann E (1996) Temperature-induced sol-gel transition and microgel formation in alpha-actinin cross-linked actin networds–a rheological study. Phys Rev E 54: 1802–1810

    Article  CAS  Google Scholar 

  • Tint IS, Hollenbeck PJ, Verkhovsky AB, Surgucheva IG, Bershadsky AD (1991) Evidence that intermediate filament reorganization is induced by ATP-dependent contraction of the actomyosin cortex in permeabilized fibroblasts. J Cell Sci 98: 375–384

    PubMed  CAS  Google Scholar 

  • Vasconcellos CA, Allen PG, Wohl ME, Drazen JM, Janmey PA, Stossel TP (1994) Reduction in viscosity of cystic fibrosis sputum in vitro by gelsolin. Science 263: 969–971

    Article  PubMed  CAS  Google Scholar 

  • Wachsstock DH, Schwartz WH, Pollard TD (1993) Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys J 65: 205–214

    Article  PubMed  CAS  Google Scholar 

  • Wachsstock DH, Schwarz WH, Pollard TD (1994) Cross-linker dynamics determine the mechanical properties of actin gels. Biophys J 66: 801–809

    Article  PubMed  CAS  Google Scholar 

  • Wang K (1977) Filamin, a new high-molecular-weight protein found in smooth muscle and nonmuscle cells Purification and properties of chicken gizzard filamin. Biochemistry 16: 1857–1865

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Singer S (1977) Interaction of filamin with F-actin in solution. Proc Natl Acad Sci USA 74: 2021–2025

    Article  PubMed  CAS  Google Scholar 

  • Waterman-Storer CM, Salmon ED (1997) Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 139: 417–434

    Article  PubMed  CAS  Google Scholar 

  • Xu JY, Schwarz WH, Käs JA, Stossel TP, Janmey PA, Pollard TD (1998a) Mechanical properties of actin filament networks depend on preparation, polymerization conditions, and storage of actin monomers. Biophys J 74: 2731–2740

    Article  PubMed  CAS  Google Scholar 

  • Xu JY, Wirtz D, Pollard TD (1998b) Dynamic cross-linking by alpha-actinin determines the mechanical properties of actin filament networks. J Biol Chem 273: 9570–9576

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Dowling J, Yu QC, Kouklis P, Cleveland DW, Fuchs E (1996) An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell 86: 655–665

    Article  PubMed  CAS  Google Scholar 

  • Yin HL, Stossel TP (1979) Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281: 583–586

    Article  PubMed  CAS  Google Scholar 

  • Yin HL, Zaner KS, Stossel TP (1980) Ca2+ control of actin gelation. J Biol Chem 255: 9494–9500

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janmey, P.A., Shah, J.V., Tang, J.X., Stossel, T.P. (2001). Actin Filament Networks. In: dos Remedios, C.G., Thomas, D.D. (eds) Molecular Interactions of Actin. Results and Problems in Cell Differentiation, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46560-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46560-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53675-5

  • Online ISBN: 978-3-540-46560-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics