Skip to main content

Interaction of X-Rays with Matter

  • Chapter
  • 593 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 15))

Abstract

In optics, the term dispersion means the separation of electromagnetic waves into their component wavelengths. The first treatment in the X-ray region was given by Compton. He adapted the theory developed earlier for the optical region by Lorentz [3.1]. He assumed that the electrons in atoms can act like oscillators. Thus in the classical dispersion theory the atoms scatter X-rays as if they contain electric dipole oscillators of certain definite natural frequencies, which represent the atomic absorption frequencies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.A. Lorentz: The Theory of Electrons (G.E. Stechert, New York 1923)

    Google Scholar 

  2. J.S. Thomsen: J. Phys. B 16, 1171 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  3. B.G. Gokhale: Ann. Phys. (Paris) 7, 852 (1952)

    Google Scholar 

  4. A. Larsson: Thesis, Uppsala (1929)

    Google Scholar 

  5. W.L. Bragg: Proc. Cambridge Philos. Soc. 17, 43 (1913)

    MATH  Google Scholar 

  6. P.P. Ewald: In Advances in X-Ray Spectroscopy, ed. by C. Bonnelle, C. Mande (Pergamon, New York 1982)

    Google Scholar 

  7. A.H. Compton: Philos. Mag. 45, 1121 (1923)

    Google Scholar 

  8. S.W. Smith: Phys. Rev. 40, 156 (1932)

    Article  ADS  Google Scholar 

  9. W. Stenström: Thesis, Lund (1919)

    Google Scholar 

  10. C.C. Hatley, B. Davis: Phys. Rev. 23, 290 (1924)

    Google Scholar 

  11. C.C. Hatley: Phys. Rev. 24, 486 (1924)

    Article  ADS  Google Scholar 

  12. B. Davis, R. Von Nardoff: Phys. Rev. 23, 291 (1924)

    Google Scholar 

  13. R. von Nardoff: Phys. Rev. 24, 143 (1924)

    Article  ADS  Google Scholar 

  14. A. Larsson, M. Siegbahn, I. Waller: Naturwissenschaften 12, 1212 (1924)

    Article  ADS  Google Scholar 

  15. B. Davis, C.M. Slack: Phys. Rev. 25, 881 (1925);

    Article  Google Scholar 

  16. B. Davis, C.M. Slack: Phys. Rev. ibid. 27, 18 (1926)

    Article  ADS  Google Scholar 

  17. C.M. Slack: Phys. Rev. 27, 691 (1926)

    Article  ADS  Google Scholar 

  18. R. Ladenburg: Z. Phys. 4, 451 (1921)

    Article  ADS  Google Scholar 

  19. G.E.M. Jauncey: Philos. Mag. 48, 81 (1924)

    Google Scholar 

  20. R. de L. Kronig: J. Opt. Soc. Am. 12, 547 (1926)

    Article  ADS  Google Scholar 

  21. H. Kallman, H. Mark: Naturwissenschaften 14, 648 (1926);

    Article  ADS  Google Scholar 

  22. H. Kallman, H. Mark: Ann. Phys. 82, 585 (1927)

    Article  Google Scholar 

  23. W. Bothe: Z. Phys. 40, 653 (1927)

    Article  ADS  MATH  Google Scholar 

  24. J.A. Prins: Z. Phys. 47, 479 (1928)

    Article  ADS  Google Scholar 

  25. H. Föll, K. Ulmer: Phys. Status Solidi A 41, 113 (1977)

    Article  ADS  Google Scholar 

  26. W. Kuhn: Z. Phys. 33, 408 (1925)

    Article  ADS  MATH  Google Scholar 

  27. W. Thomas: Naturwissenschaften 13, 627 (1925)

    Article  ADS  MATH  Google Scholar 

  28. H.A. Bethe, E.E. Salpeter: In Handbuch der Physik, Vol. 35, ed. by S. Flügge (Springer, Berlin, Heidelberg 1957) p. 88

    Google Scholar 

  29. S.T. Manson, J.W. Cooper: Phys. Rev. 165, 126 (1968)

    Article  ADS  Google Scholar 

  30. E.J. McGuire: Phys. Rev. 175, 20 (1968)

    Article  ADS  Google Scholar 

  31. U. Fano, J.W. Cooper: Rev. Mod. Phys. 40, 441 (1968)

    Article  ADS  Google Scholar 

  32. Y. Sugiura: J. de Phys. 8, 113 (1927)

    MATH  Google Scholar 

  33. R. de L. Kronig. H.A. Kramers: Z. Phys. 48, 174 (1928)

    Article  ADS  MATH  Google Scholar 

  34. M. Wolf: Ann. Phys. 10, 973 (1933)

    Article  Google Scholar 

  35. H. Hönl: Z. Phys. 84, 1 (1933);

    Article  ADS  MATH  Google Scholar 

  36. H. Hönl: Ann. Phys. 18, 625 (1933)

    Article  Google Scholar 

  37. J.A. Wheeler, J.A. Bearden: Phys. Rev. 46, 755 (1934)

    Article  ADS  Google Scholar 

  38. F. Herman, S. Skillman: Atomic Structure Calculations (Prentice-Hall, Englewood Cliffs, NJ 1963)

    Google Scholar 

  39. E.N. Lassettre, S.A. Francis: J. Chem. Phys. 40, 1208 (1964)

    Article  ADS  Google Scholar 

  40. L.G. Parratt, C.F. Hempstead: Phys. Rev. 94, 1593 (1954)

    Article  ADS  Google Scholar 

  41. D.T. Cromer, D. Liberman: J. Chem. Phys. 53, 1891 (1970);

    Article  ADS  Google Scholar 

  42. D.T. Cromer, D. Liberman: Acta Crystallogr. A37, 267 (1981)

    ADS  Google Scholar 

  43. R. Glocker, K. Schäfer: Z. Phys 73, 289 (1931);

    Google Scholar 

  44. see also K. Schäfer: Z. Phys. 86, 739 (1933)

    Google Scholar 

  45. T. Fukamachi, S. Hosoya, T. Kawamura, J. Hastings: J. Appl. Crystallogr. 10, 321 (1977)

    Article  Google Scholar 

  46. T. Fukamuchi, S. Hosoya, T. Kawamura, S. Hunter, Y. Nakano: J. Appl. Phys. 17–2, 326 (1978)

    Google Scholar 

  47. G. Martens, P. Rabe: Phys. Status Solidi A 58, 415 (1980)

    Article  ADS  Google Scholar 

  48. M. Hart, D.P. Siddons: Proc. R. Soc. London, A 376, 465 (1981);

    Article  ADS  Google Scholar 

  49. see also D.P. Siddons, M. Hart: In EXAFS and Near Edge Structure, ed. by A. Bianconi, L. Incoccia, S. Stipcich, Springer Ser. Chem. Phys., Vol. 27 (Springer, Berlin, Heidelberg 1983)

    Google Scholar 

  50. U. Bonse, G. Materlik: Z. Phys. B 24, 186 (1976)

    ADS  Google Scholar 

  51. U. Bonse, I. Hartmann-Lotsch, H. Lotsch: Nucl. Instrum. Methods 208, 603 (1983);

    Article  Google Scholar 

  52. U. Bonse, I. Hartmann-Lotsch, H. Lotsch: in EXAFS and Near Edge Structure, ed. by A. Bianconi, L. Incoccia, S. Stipcich, Springer Ser. Chem. Phys., Vol. 27 (Springer, Berlin, Heidelberg 1983)

    Google Scholar 

  53. P. Dreier, P. Rabe, W. Malzfeldt, W. Niemann: J. Phys. C. 17, 3123 (1984)

    Article  ADS  Google Scholar 

  54. T. Kawamura, T. Fukumachi: Jpn. J. Appl. Phys. 17, Suppl. 17–2, 224–226 (1978)

    Google Scholar 

  55. B.K. Agarwal: Quantum Mechanics and Field Theory, 2nd ed. (Lokbharti, Allahabad 1983) p. 494

    Google Scholar 

  56. V. Weisskopf, E. Wigner: Z. Phys. 63, 54 (1980)

    ADS  Google Scholar 

  57. F.K. Richtmyer, S.W. Barnes, E. Ramberg: Phys. Rev. 46, 843 (1934)

    Article  ADS  MATH  Google Scholar 

  58. A. Beer: Ann. Phys. 86, 78 (1952)

    Google Scholar 

  59. E.P. Bertin: Principles and Practice of X-Ray Spectrometric Analysis (Plenum, New York 1975)

    Book  Google Scholar 

  60. B.L. Henke, R.L. Elgin: Adv. X-Ray Anal. 13, 639 (1970)

    Article  Google Scholar 

  61. B.L. Henke, P.A. Lee, T.J. Tanaka, R.L. Shimabukuro, B.K. Fujikawa: At. Data Nucl. Data Tables 27, 1 (1982)

    Article  ADS  Google Scholar 

  62. J.H. Hubbell: “Photon Cross Sections, Attenuation Coefficients and Energy Absorption Coefficients from 10 keV to 100 GeV”; Report NSRDS-NBS 29 (1969)

    Google Scholar 

  63. J.H. Hubbell, H.A. Gimm, I. Overbo: J. Phys. Chem. Ref. Data 9, 1023 (1980)

    Article  ADS  Google Scholar 

  64. J.H. Hubbell: Int. J. Appl. Radiat. Isot. 33, 1269 (1982)

    Article  Google Scholar 

  65. E.B. Salmon, J.H. Hubbell: “X-ray Attenuation Coefficients (Total Cross Sections): Comparison of the Experimental Data Base with the Recommended Values of Henke and the Theoretical Values of Scofield for Energies between 0.1 and 100 keV”; National Bureau of Standards Internal Report NBSIR-86–3431 (1986)

    Google Scholar 

  66. J.H. Scofield: “Theoretical Photoionization Cross Sections from 1 to 1500 keV”; Lawrence Livermore Nat. Lab. Rep. UCRL-51326 (1973)

    Book  Google Scholar 

  67. D.C. Creagh: In Radiation Physics, ed. by E. Casnati, C. Baraldi, A. Tartari (North-Holland, Amsterdam 1987) p. 1;

    Google Scholar 

  68. see also D.F. Jackson, D.J. Hawkes: Phys. Rep. 70, 169 (1981)

    Article  ADS  Google Scholar 

  69. K. Lonsdale (ed.): International Tables for X-Ray Crystallography (Kynoch, Birmingham, England 1962) Sect. 3.2

    Google Scholar 

  70. B.A. Cooke, E.A. Stewardson: Br. J. Appl. Phys. 15, 1315 (1964)

    Article  ADS  Google Scholar 

  71. A.T. Nelms: Circ. Nat. Bur. Stand. No.577 (1956)

    Google Scholar 

  72. M. Stobbe: Ann. Phys. 7, 661 (1930)

    Article  MATH  Google Scholar 

  73. H. Wagenfeld: Phys. Rev. 144, 216 (1966);

    Article  ADS  Google Scholar 

  74. see also G. Hildebrandt, J.D. Stephenson, H. Wagenfeld: Z. Naturforsch. 28a, 588 (1973)

    ADS  Google Scholar 

  75. J.C. Slater: Phys. Rev. 36, 57 (1930)

    Article  ADS  MATH  Google Scholar 

  76. Z.G. Pinsker: Dynamical Scattering of X-Rays in Crystals, Springer Ser. Solid-State Sci., Vol. 3 (Springer, Berlin, Heidelberg 1978) pp. 82,359

    Google Scholar 

  77. R.T. Berger: Radiat. Phys. 15, 1 (1961)

    Article  Google Scholar 

  78. J.W. Allison: Aust. J. Phys. 14, 443 (1961)

    Article  ADS  Google Scholar 

  79. J.H. Hubbell: Radiat. Res. 70, 58 (1977)

    Article  Google Scholar 

  80. E. Jönsson: Thesis, Uppsala (1928)

    Google Scholar 

  81. H. Rindfleisch: Ann. Phys. 28, 409 (1937)

    Article  Google Scholar 

  82. S. Laubert: Ann. Phys. 40, 553 (1941)

    Google Scholar 

  83. H. Tellez-Plasencia: J. Phys. Radium 10, 14 (1949)

    Article  Google Scholar 

  84. B. Walter: Fortschr. Geb. Röntgenstr. 35, 929, 1308 (1927)

    Google Scholar 

  85. B.K. Agarwal: Curr. Sci. 23, 357 (1954)

    Google Scholar 

  86. R. Böklen, S. Geiling: Z. Metallkd. 40, 157 (1949)

    Google Scholar 

  87. J.A. Prins: Z. Phys. 47, 479 (1928)

    Article  ADS  Google Scholar 

  88. J.P. Thibaud: Phys. Rev. 35, 1452 (1930)

    Article  ADS  Google Scholar 

  89. H. Kiessig: Ann. Phys. 10, 715, 769 (1931)

    Article  Google Scholar 

  90. U. Bonse, M. Hart: Appl. Phys. Lett. 6, 155 (1965);

    Article  ADS  Google Scholar 

  91. U. Bonse, M. Hart: Appl. Phys. Lett. ibid. 7, 99,239 (1965);

    Google Scholar 

  92. U. Bonse, M. Hart: Z. Phy. 190, 455 (1966)

    Article  Google Scholar 

  93. M. Hart, U. Bonse: Phys. Today 23, 26 (1970)

    Article  Google Scholar 

  94. R.D. Deslattes: Proc. Intl. Conf. On Precision Measurement and Fundamental Constants, Aug. 1970 (Govt. Printing Office, Washington, DC 1971)

    Google Scholar 

  95. P.L. Cowan, J.A. Golovchenko, M.F. Robbins: Phys. Rev. Lett. 44, 1680 (1980)

    Article  ADS  Google Scholar 

  96. M.J. Bedzyk, G. Materlik: Phys. Rev. B 31, 4110 (1985)

    Article  ADS  Google Scholar 

  97. A. Frahm, M.J. Bedzyk: Phys. Rev. Lett. 52, 441 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agarwal, B.K. (1991). Interaction of X-Rays with Matter. In: X-Ray Spectroscopy. Springer Series in Optical Sciences, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38668-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38668-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50719-2

  • Online ISBN: 978-3-540-38668-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics