Skip to main content

Electrophysiology of Turgor Regulation in Charophyte Cells

  • Chapter
Book cover Plant Electrophysiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amtmann A, Sanders D (1999) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29:76–112

    Google Scholar 

  • Bartels D, Nelson D (1994) Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ 17:659–667

    Article  CAS  Google Scholar 

  • Beilby MJ (1984) Current-voltage characteristics of the proton pump at Chara plasmalemma. I. pH dependence. J Membr Biol 81:113–125

    Article  Google Scholar 

  • Beilby MJ (1985) Potassium channels at Chara plasmalemma. J Exp Bot 163:228–239

    Article  Google Scholar 

  • Beilby MJ (1986a) Potassium channels and different states of Chara plasmalemma. J Membr Biol 89:241–249

    Article  CAS  Google Scholar 

  • Beilby MJ (1986b) Factors controlling the K+ conductance in Chara. J Membr Biol 93:187–193

    Article  CAS  Google Scholar 

  • Beilby MJ (1989) Electrophysiology of giant algal cells. Methods Enzymol 174:403–442

    Article  CAS  Google Scholar 

  • Beilby MJ (1990) Current-voltage curves for plant membrane studies: a critical analysis of the method. J Exp Bot 41:165–182

    Article  Google Scholar 

  • Beilby MJ, Shepherd VA (1989) Cytoplasm-enriched fragments of Chara – structure and electrophysiology. J Exp Bot 41:168–182

    Google Scholar 

  • Beilby MJ, Shepherd VA (1996) Turgor regulation in Lamprothamnium papulosum. I. I/V analysis and pharmacological dissection of the hypotonic effect. Plant Cell Environ 19:837–847

    Article  Google Scholar 

  • Beilby MJ, Shepherd VA (2001a) Modeling the current-voltage characteristics of charophyte membranes. II. The effect of salinity on membranes of Lamprothamnium papulosum. J Membr Biol 181:77–89

    CAS  PubMed  Google Scholar 

  • Beilby MJ, Shepherd VA (2001b) Modeling the current-voltage characteristics of charophyte membranes. III. K+ of Lamprothamnium. Aust J Plant Physiol 28:541–550

    CAS  Google Scholar 

  • Beilby MJ, Shepherd VA (2006a) The characteristics of Ca++-activated Cl channels of salt-tolerant charophyte Lamprothamnium. Plant Cell Environ 29:764–777

    Article  CAS  PubMed  Google Scholar 

  • Beilby MJ, Shepherd VA (2006b) The electrophysiology of salt tolerance in charophytes Cryptoganie Algologie (in press)

    Google Scholar 

  • Beilby MJ, Walker NA (1981) Chloride transport in Chara. I. Kinetics and current-voltage curves for a probable proton symport. J Exp Bot 32:43–49

    Article  CAS  Google Scholar 

  • Beilby MJ, Walker NA (1996) Modelling the current-voltage characteristics of Chara membranes: I. The effect of ATP removal and zero turgor. J. Membrane Biol 149:89–101

    Article  CAS  Google Scholar 

  • Beilby MJ, Mimura T, Shimmen T (1997) Perfusion of charophyte cells: a critical analysis of the method. J Exp Bot 48:157–172

    Article  CAS  Google Scholar 

  • Beilby MJ, Cherry CA, Shepherd VA (1999) Dual turgor regulation response to hypotonic stress in Lamprothamnium papulosum. Plant Cell Environ 22:347–359

    Article  CAS  Google Scholar 

  • Bisson MA, Bartholomew D (1984) Osmoregulation or turgor regulation in Chara? Plant Physiol 74:252–255

    Article  CAS  PubMed  Google Scholar 

  • Bisson MA, Gutknecht J (1980) Osmotic regulation in algae. In: Spanswick RM, Lucas WJ, Dainty J (ed). Plant membrane transport: current conceptual issues. Elsevier/North Holland Biomedical Press Amsterdam. pp 131–142.

    Google Scholar 

  • Bisson MA, Kirst GO (1980a) Lamprothamnium, a euryhaline Charophyte. I. Osmotic relations and membrane potential at steady state. J Exp Bot 31:1223–1235

    Article  CAS  Google Scholar 

  • Bisson MA, Kirst GO (1980b) Lamprothamnium, a euryhaline Charophyte. II. Time course of turgor regulation. J Exp Bot 31:1237–1244

    Article  Google Scholar 

  • Bisson MA, Kirst GO (1995) Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften 82:461–471

    Article  CAS  Google Scholar 

  • Bisson MA, Walker NA (1980) The Chara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH. J. Membrane Biol. 56:1–7

    Article  CAS  Google Scholar 

  • Bisson MA, Walker NA (1982) Transitions between modes of behaviour (states) of the Charophyte plasmalemma. In: Marré E, Hertel R (eds) Plasmalemma and tonoplast: their functions in the plant cell. Elsevier Biomedical Press, Amsterdam, pp 35–40

    Google Scholar 

  • Bisson MA, Kiegle E, Black D, Kiyosawa K, Gerber K (1995) The role of calcium in turgor regulation in Chara longifolia. Plant Cell Environ 18:129–137

    Article  CAS  Google Scholar 

  • Blatt M, Beilby M, Tester M (1990) Voltage dependence of the Chara proton pump revealed by current-voltage measurement during rapid metabolic blockade with cyanide. J Membr Biol 114:205–223

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  Google Scholar 

  • Burne RV, Bauld J, de Dekker P (1980) Saline lake charophytes and their geological significance. J Sed Petrol 50:281–294

    CAS  Google Scholar 

  • Clint GM, MacRobbie EAC (1987) Sodium efflux from perfused giant algal cells. Planta 171:247–253

    Article  CAS  Google Scholar 

  • Coster HGL, Zimmermann U (1976) Transduction of turgor pressure by cell membrane compression. Z Naturforsch 31:461–463

    Google Scholar 

  • Findlay GP (2001) Membranes and the electrophysiology of turgor regulation. Aust J Plant Physiol 28:617–634

    CAS  Google Scholar 

  • Fujii S, Shimmen T, Tazawa M (1979) Effect of intracellular pH on the light-induced potential change and electrogenic activity in tonoplast-free cells of Chara australis. Plant Cell Physiol 20:1315–1328

    CAS  Google Scholar 

  • Gelli A, Higgins VJ, Blumwald E (1997) Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiol 113:269–279

    CAS  PubMed  Google Scholar 

  • Graham L (1993) Origin of land plants. Wiley, New York

    Google Scholar 

  • Graham LE, Gray J (2001) The origin, morphology, and ecophysiology of early embryophytes: neontological and paleontological perspectives. In: Gensel PG, Edwards D (eds) Plants invade the land. Evolutionary and environmental perspectives. Columbia University Press, New York, pp 140–159

    Google Scholar 

  • Gutknecht J (1967) Ion fluxes and short-circuit current in internally perfused cells of Valonia ventricosa. J Gen Phys 50:1821–1834

    Article  CAS  Google Scholar 

  • Gutknecht J, Hastings D, Bisson MA (1978) Ion transport and turgor pressure regulation in giant algal cells. In: Giebisch G, Tosteson D, Ussing G (eds) Membrane transport in biology, vol III. Transport across multimembrane systems. Springer, Berlin Heidelberg New York, pp 125–174

    Google Scholar 

  • Hasegawa PM, Bressan RA (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hastings DF, Gutknecht J (1974) Turgor pressure regulation: Modulation of active potassium transport by hydrostatic pressure gradients. In: Zimmermann U, Dainty J (eds) Membrane transport in plants. Springer, Berlin Heidelberg New York, pp 79–83

    Google Scholar 

  • Heidecker M, Wegner LH, Zimmermann U (1999) A patch-clamp study of ion channels in protoplasts prepared from the marine alga Valonia utricularis. J Membr Biol 172:235–247

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann R, Bisson MA (1986) Chara buckellii, a euryhaline charophyte from an unusual saline environment. I. Osmotic relations at steady state. Can J Bot 64:1599–1605

    Article  Google Scholar 

  • Hoffmann R, Bisson MA (1988) The effect of divalent cations on Na+ tolerance in Charophytes. I. Chara buckellii. Plant Cell Environ 11:461–472

    Article  Google Scholar 

  • Hoffmann R, Bisson MA (1990) Chara buckellii, a euryhaline charophyte from an unusual saline environment. III. Time course of turgor regulation. Plant Physiol 93:122–127

    Article  PubMed  Google Scholar 

  • Hoffmann R, Tufariello JM, Bisson MA (1989) Effect of divalent cations on Na+ permeability of Chara corallina and freshwater grown Chara buckellii. J Exp Bot 40:875–881

    Article  CAS  Google Scholar 

  • Hope AB, Walker NA (1975) The physiology of giant algal cells. Cambridge University Press, London

    Google Scholar 

  • Kapraun DF (2005) Nuclear DNA content estimates in multicellular green, red, and brown algae: phylogenetic considerations. Ann Bot 95:7–44

    Article  CAS  PubMed  Google Scholar 

  • Kacperska A (2004) Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiol Plant 122:159–168

    Article  CAS  Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294:2351–2353

    Article  CAS  PubMed  Google Scholar 

  • Kirst GO (1977) Coordination of ionic relations and mannitol concentrations in the euryhaline unicellular alga, Platymonas subcordiformis after osmotic shocks. Planta 135:69–75

    Article  CAS  Google Scholar 

  • Kishimoto U, Tazawa M (1965) Ionic composition and electric response of Lamprothamnium succinctum. Plant Cell Physiol 6:529–536

    CAS  Google Scholar 

  • Laver DR, Walker NA (1987) Steady-state voltage-dependent gating and conduction kinetics of single K+ channels in the membrane of cytoplasmic drops of Chara australis. J Membr Biol 100:31–42

    Article  Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    Article  Google Scholar 

  • Lühring H (1986) Recording of single K+ channels in the membrane of cytoplasmic drop of Chara australis. Protoplasma 133:19–27

    Article  Google Scholar 

  • McCourt RM, Delwiche CF, Karol KG (2004) Charophyte algae and land plant origins. Trends Ecol Evol 19:661–2353

    Article  PubMed  Google Scholar 

  • Nakanishi Y, Matsuda N, Aizawa K, Kashiyama T, Yamamoto K, Mimura T, Ikeda M, Maeshima M (1999) Molecular cloning and sequencing of the cDNA for vacuolar H+-pyrophosphatase from Chara corallina. Biochim Biophys Acta 1418:245–250

    Article  CAS  PubMed  Google Scholar 

  • Nobel PS (1974) Introduction to biophysical plant physiology. Freeman, San Francisco

    Google Scholar 

  • Oda K (1962) Polarised and depolarised states of the membrane in Chara braunii with special reference to the transition between the two states. Sci Rep Tohoku Univ Ser IV Biol 28:1–16

    Google Scholar 

  • Okazaki Y, Iwasaki N (1992) Net efflux of Cl during hypotonic turgor regulation in a brackish water alga Lamprothamnium. Plant Cell Environ 15:61–70

    Article  CAS  Google Scholar 

  • Okazaki Y, Tazawa M (1986a) Ca2 + antagonist nifedipine inhibits turgor regulation upon hypotonic treatment in internodal cells of Lamprothamnium. Protoplasma 135:65–66

    Article  Google Scholar 

  • Okazaki Y, Tazawa M (1986b) Involvement of calcium ion in turgor regulation upon hypotonic treatment in Lamprothamnium succinctum. Plant Cell Environ 9:185–190

    CAS  Google Scholar 

  • Okazaki Y, Tazawa M (1987) Increase in cytoplasmic calcium content in internodal cells of Lamprothamnium upon hypotonic treatment. Plant Cell Env 10:619–621

    Google Scholar 

  • Okazaki Y, Shimmen T, Tazawa M (1984) Turgor regulation in a brackish Charophyte, Lamprothamnium succinctum. II. Changes in K+, Na+ and Cl concentrations, membrane potential and membrane resistance during turgor regulation. Plant Cell Physiol 25:573–581

    CAS  Google Scholar 

  • Okazaki Y, Yoshimoto Y, Hiramoto Y ,Tazawa M (1987) Turgor regulation and cytoplasmic free Ca2+ in the alga Lamprothamnium. Protoplasma 140:67–71

    Article  Google Scholar 

  • Okazaki Y, Ishigami M, Iwasaki N (2002) Temporal relationship between cytosolic free Ca2 + and membrane potential during hypotonic turgor regulation in a brackish water charophyte Lamprothamnium succinctum. Plant Cell Physiol 43:1027–1035

    Article  CAS  PubMed  Google Scholar 

  • Pickard BG, Ding JP (1992) Gravity sensing by higher plants. Adv Comp Env Physiol 10:81–110

    Google Scholar 

  • Pickard BG, Ding JP (1993) The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre? Austr J Plant Physiol 20:439–459

    Article  CAS  Google Scholar 

  • Raven JA (1975) Algal cells. In: Baker D, Hall A (eds) Ion transport in plant cells and tissues. North Holland, Amsterdam, pp 125–160

    Google Scholar 

  • Raven JA (1985) Energetics and transport in aquatic plants. Liss, New York

    Google Scholar 

  • Reid RJ, Smith FA (1992) Measurement of calcium fluxes in plants using 45Ca. Planta 186:558–566

    Article  CAS  Google Scholar 

  • Reid RJ, Smith FA (1993) Effects of salinity and turgor on 45Ca influx in Chara. Plant Cell Environ 16:547–554

    Article  CAS  Google Scholar 

  • Reid RJ, Walker NA (1983) Adenylate concentrations in Chara: variability, effects of inhibitors and relationship to protoplasmic streaming. Austr J Plant Physiol 10:373–383

    CAS  Google Scholar 

  • Reid RJ, Jefferies R, Pitman MG (1984) Lamprothamnium, a euryhaline charophyte IV. Membrane potential, ionic fluxes and metabolic activity during turgor adjustment. J Exp Bot 35:925–937

    Article  CAS  Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Article  Google Scholar 

  • Sanders D (1981) Physiological control of chloride transport in Chara corallina. I. Effects of low temperature, cell turgor pressure, and anions. Plant Physiol 67:1113–1118

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Smith FA ,Walker NA (1985) Proton/chloride cotransport in Chara: mechanism of enhanced influx after rapid acidification. Planta 163:411–418

    Article  CAS  Google Scholar 

  • Shepherd VA, Beilby MJ (1999) The effect of an extracellular mucilage on the response to osmotic shock in the charophyte alga Lamprothamnium papulosum. J Membrane Biol 170:229–242

    Article  CAS  Google Scholar 

  • Shepherd VA, Beilby MJ, Heslop DJ (1999) Ecophysiology of the hypotonic response in the salt-tolerant charophyte alga Lamprothamnium papulosum. Plant Cell Environ 22:333–346

    Article  Google Scholar 

  • Shepherd VA, Beilby MJ, Shimmen T (2002) Mechanosensory ion channels in charophyte cells: the response to touch and salinity stress. Eur Biophys J 31:341–355

    Article  CAS  PubMed  Google Scholar 

  • Shimmen T, Yokota E (1994) physiological and biochemical aspects of cytoplasmic streaming. Int Rev Cytol 155:97–139

    Article  CAS  Google Scholar 

  • Shimmen T, Mimura T, Kikuyama M, Tazawa M (1994) Characean cells as a tool for studying electrophysiological characteristics of plant cells. Cell Struc Funct 19:263–278

    Article  CAS  Google Scholar 

  • Shimmen T, MacRobbie EAC (1987) Characterization of two proton transport systems in the tonoplast of plasmalemma-permeabilized Nitella cells. Plant Cell Physiol 28:1023–1031

    CAS  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotech 9:214–219

    Article  CAS  PubMed  Google Scholar 

  • Smith FA, Raven JA (1979) Intracellular pH and its regulation. Annu Rev Plant Physiol 30:289–311

    Article  CAS  Google Scholar 

  • Smith PT (1984) Electrical evidence from perfused and intact cells for voltage-dependent K+ channels in the plasmalemma of Chara australis. Austr J Plant Physiol 11:303–318

    CAS  Google Scholar 

  • Smith PT, Walker NA (1981) Studies on the perfused plasmalemma of Chara corallina. I. Current voltage curves: ATP and potassium dependence. J Membr Biol 60:223–236

    Article  CAS  Google Scholar 

  • Spanswick RM (1972) Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K+, Na+, light and temperature on the membrane potential and resistance. Biochim Biophys Acta 288:73–89

    Article  CAS  PubMed  Google Scholar 

  • Spanswick RM (1980) Biophysical control of electrogenic pumps in the Characeae. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North Holland Biomedical Amsterdam, pp 305–315

    Google Scholar 

  • Spanswick RM (1981) Electrogenic ion pumps. Annu Rev Plant Physiol 32:267–289

    Article  CAS  Google Scholar 

  • Spanswick RM, Williams EJ (1964) Electrical potentials and Na, K, and Cl concentrations in the vacuole and cytoplasm of Nitella translucens. J Exp Bot 15:193–200

    Article  CAS  Google Scholar 

  • Stento NA, Ryba NG, Kiegle EA, Bisson MA (2000) Turgor regulation in the salt-tolerant alga Chara longifolia. Plant Cell Environ 23:629–637

    Article  CAS  Google Scholar 

  • Steudle E, Zimmermann U (1974) Determination of the hydraulic conductivity and of reflection coefficients in Nitella flexilis by means of direct cell-turgor pressure measurements. Biochim Biophys Acta 332:399–412

    Article  Google Scholar 

  • Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689

    Article  CAS  PubMed  Google Scholar 

  • Tazawa M, Shimmen T, Mimura T (1987) Membrane control in the Characeae. Annu Rev Plant Physiol 38:95–117

    Article  CAS  Google Scholar 

  • Tester M (1988a) Blockade of potassium channels in the plasmalemma of Chara corallina by tetraethylammonium, Ba2+, Na+ and Cs+. J Membrane Biol 105:77–85

    Article  Google Scholar 

  • Tester M (1988b) Potassium channels in the plasmalemma of Chara corallina are multi-ion pores—voltage-dependent blockade by Cs+ and anomalous permeabilities. J Memb Biol 105:87–94

    Article  Google Scholar 

  • Tester M (1990) Plant ion channels: whole-cell and single-channel studies. New Phytol 114:77–85

    Article  Google Scholar 

  • Turmel M, Ehara M, Otis C, Lemieux C (2001) Phylogenetic relationships among streptophytes as inferred from chloroplast small and large subunit rRNA gene sequences. J Phycol 38:364–375

    Article  Google Scholar 

  • Tyerman SD, Findlay GP (1989) Current–voltage curves of single Cl channels which coexist with two types of K+ channel in the tonoplast of Chara corallina. J Exp Bot 40:105–117

    Article  Google Scholar 

  • Tyerman SD, Skerrett IM (1999) Root ion channels and salinity. Sci Hort 78:175–235

    Article  CAS  Google Scholar 

  • Walker NA, Smith FA (1977) Circulating electric currents between acid and alkaline zones associated with HCO3 assimilation in Chara. J Exp Bot 28:1190–1206

    Article  CAS  Google Scholar 

  • Whittington J, Bisson MA (1994) Na+ fluxes in Chara under salt stress. J Exp Bot 45:657–665

    Article  CAS  Google Scholar 

  • Wichmann F, Kirst GO (1989) Adaptation of the euryhaline Charophyte Lamprothamnium papulosum to brackish and freshwater: turgor pressure and vacuolar solute concentrations during steady-state culture and after hypo-osmotic treatment. J Exp Bot 40:135–141

    Article  Google Scholar 

  • Williams WD (1998) Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiology 381:191–201

    Article  Google Scholar 

  • Williamson RE, Ashley CC (1982) Free Ca2 + and cytoplasmic streaming in the alga Chara. Nature 296:647–651

    Article  CAS  PubMed  Google Scholar 

  • Winter U, Kirst GO (1990) Salinity response of a freshwater charophyte, Chara vulgaris. Plant Cell Environ 13:123–134

    Article  CAS  Google Scholar 

  • Winter U, Kirst GO (1991) Partial turgor regulation in Chara canescens and its implications for a generalised hypothesis of salinity response in charophytes. Bot Acta 104:37–46

    CAS  Google Scholar 

  • Winter U, Kirst GO (1992) Turgor pressure regulation in Chara aspera (Charophyta): the role of sucrose accumulation in fertile and sterile plants. Phycol 31:240–245

    Google Scholar 

  • Winter U, Soulié-Märsche I, Kirst GO (1996) Effects of salinity on turgor pressure and fertility in Tolypella (Characeae). Plant Cell Environ 19:869–879

    Article  Google Scholar 

  • Winter U, Kirst GO, Grabowski V, Heinemann U, Plettner I ,Wiese S (1999) Salinity tolerance in Nitellopsis obtusa. Austr J Bot 47:337–346

    Article  Google Scholar 

  • Yao X, Bisson MA (1993) Passive proton conductance is the major reason for membrane depolarization and conductance increase in Chara buckellii in high-salt conditions. Plant Physiol 103:197–203

    CAS  PubMed  Google Scholar 

  • Yao X, Bisson MA, Brzezicki LJ (1992) ATP-driven proton pumping in two species of Chara differing in their salt tolerance. Plant Cell Env 15:199–210

    Article  CAS  Google Scholar 

  • Zimmermann U, Steudle E (1971) Effects of potassium concentration and osmotic pressure of sea water on the cell-turgor pressure of Chaetomorpha linum. Mar Biol 11:132–137

    Google Scholar 

  • Zimmermann U, Steudle E (1974) The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation in Valonia utricularis. J Membr Biol16:331–352

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beilby, M.J., Bisson, M.A., Shepherd, V.A. (2006). Electrophysiology of Turgor Regulation in Charophyte Cells. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_16

Download citation

Publish with us

Policies and ethics