Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 11))

Abstract

The paper presents a theoretical study of the dynamic equations and their solutions for a granular material whose mechanical behaviour is described by a constitutive equation of the hypoplasticity theory. Discussed in the paper are well-posedness of the dynamic problem, cyclic shearing of a granular material, the coupling between the transverse and the longitudinal displacement components in the dynamic solutions, the double-frequency effect as a consequence of this coupling, and liquefaction of a saturated granular solid caused by the dynamic cyclic shearing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, L., Schaeffer, D.G. (1992) The flutter instability in granular flow. J. Mech. Phys. Solids, 40 (3), 683–698

    Article  MathSciNet  MATH  Google Scholar 

  2. An, L. (1993) Loss of hyperbolicity in elastic-plastic material at finite strains. SIAM J. Appl. Math., 53 (3), 621–654

    MathSciNet  MATH  Google Scholar 

  3. Bauer, E. (1996) Calibration of a comprehensive hypoplastic model for granular materials. Soils and Foundations, 36 (1), 13–26

    Article  Google Scholar 

  4. Berezin, Y. A., Osinov, V. A., Hutter, K. (2001) Evolution of plane disturbances in hypoplastic granular materials. Continuum Mech. Thermodyn., 13, 79–90

    Article  MATH  Google Scholar 

  5. Bigoni, D., Zaccaria, D. (1994) On the eigenvalues of the acoustic tensor in elastoplasticity. Eur. J. Mech., A/Solids, 13 (5), 621–638

    MathSciNet  MATH  Google Scholar 

  6. Dafalias, Y. F. (1986) Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. J. Eng. Mech., ASCE, 112 (9), 966–987

    Article  Google Scholar 

  7. Drnevich, V. P. (1972) Undrained cyclic shear of saturated sand. J. Soil Mech. Found. Div., Proc. ASCE, 98, SM8, 807–825

    Google Scholar 

  8. Finn, W. D. L., Pickering, D. J., Bransby, P. L. (1971) Sand liquefaction in triaxial and simple shear tests. J. Soil Mech. Found. Div., Proc. ASCE, 97, SM4, 639–659

    Google Scholar 

  9. Gordon. M. S., Shearer, M., Schaeffer, D. G. (1997) Plane shear waves in a fully saturated granular medium with velocity and stress controlled boundary conditions. Int. J. Non-Linear Mech., 32 (3), 489–503

    Article  MATH  Google Scholar 

  10. Gudehus, G. (1996) A comprehensive constitutive equation for granular materials. Soils and Foundations, 36 (1), 1–12

    Article  Google Scholar 

  11. Hardin, B. O., Drnevich, V. P. (1972) Shear modulus and damping in soils: design equations and curves. J. Soil Mech. Found. Div., Proc. ASCE, 98, SM7, 667–692

    Google Scholar 

  12. Hayes, B. T., Schaeffer, D. G. (1998) Plane shear waves under a periodic boundary disturbance in a saturated granular medium. Physica D, 121, 193–212

    Article  MathSciNet  MATH  Google Scholar 

  13. Hayes, B. T., Schaeffer, D. G. (2000) Stress-controlled shear waves in a saturated granular medium. Eur. J. Appl. Math., 11, 81–94

    Article  MathSciNet  MATH  Google Scholar 

  14. Hill, R. (1962) Acceleration waves in solids. J. Mech. Phys. Solids, 10, 1–16

    Article  MathSciNet  MATH  Google Scholar 

  15. Ishihara, K. (1993) Liquefaction and flow failure during earthquakes. Géotechnique, 43 (3), 351–415

    Article  Google Scholar 

  16. Ishihara, K. (1996) Soil Behaviour in Earthquake Geotechnics. Clarendon Press, Oxford

    Google Scholar 

  17. Kramer, S. L. (1996) Geotechnical Earthquake Engineering. Prentice Hall, Upper Saddle River

    Google Scholar 

  18. Loret, B., Prévost, J. H., Harireche, O. (1990) Loss of hyperbolicity in elastic-plastic solids with deviatoric associativity. Eur. J. Mech., A/Solids, 9 (3), 225–231

    MATH  Google Scholar 

  19. Loret. B.. Harireche, O. (1991) Acceleration waves, flutter instabilities and stationary discontinuities in inelastic porous media. J. Mech. Phys. Solids, 39 (5); 569–606

    Article  MathSciNet  MATH  Google Scholar 

  20. Mandel, J. (1962) Ondes plastiques dans un milieu indéfini à trois dimensions. Journal de Mécanique, 1 (1), 3–30

    MathSciNet  Google Scholar 

  21. Mandel, J. (1964) Propagation des surfaces de discontinuité dans un milieu élastoplastique. In: Stress waves in anelastic solids, H. Kolsky and W. Prager (Eds.), Springer, Berlin, 331–340

    Chapter  Google Scholar 

  22. Molenkamp, F. (1991) Material instability for drained and undrained behaviour. Parts 1, 2. Int. J. Num. Anal. Meth. Geomech., 15, 147–180

    Article  MATH  Google Scholar 

  23. Niemunis, A., Herle, I. (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-frictional Mater., 2 (4), 279–299

    Article  Google Scholar 

  24. Osinov, V. A., Gudehus, G. (1996) Plane shear waves and loss of stability in a saturated granular body. Mech. Cohesive-frictional Mater., 1 (1), 25–44

    Article  Google Scholar 

  25. Osinov, V. A. (1997) Plane waves and dynamic ill-posedness in granular media. In: Powders and Grains’97, R. P. Behringer and J. T. Jenkins (Eds.), Balkema, Rotterdam, 363–366

    Google Scholar 

  26. Osinov, V. A. (1998) Theoretical investigation of large-amplitude waves in granular soils. Soil Dyn. Earthquake Eng., 17 (1), 13–28

    Article  Google Scholar 

  27. Osinov, V. A., Loukachev, I. (2000) Settlement of liquefied sand after a strong earthquake. In: Compaction of soils, granulates and powders, D. Kolymbas and W. Fellin (Eds.), Balkema, Rotterdam, 297–306

    Google Scholar 

  28. Osinov, V. A. (2000) Wave-induced liquefaction of a saturated sand layer. Continuum Mech. Thermodyn., 12 (5), 325–339

    Article  MathSciNet  MATH  Google Scholar 

  29. Osinov, V. A. (2001) The role of dilatancy in the plastodynamics of granular solids. In: Powders and Grains 2001, Y. Kishino (Ed.), Swets and Zeitlinger, Lisse, 135–138

    Google Scholar 

  30. Osinov, V. A. (1998) On the formation of discontinuities of wave fronts in a saturated granular body. Continuum Mech. Thermodyn., 10 (5), 253–268

    Article  MathSciNet  MATH  Google Scholar 

  31. Osinov, V. A. (2002) Cyclic shear of saturated soil: the evolution of stress inhomogeneity. Continuum Mech. Thermodyn., 14 (2), 191–205

    Article  MathSciNet  MATH  Google Scholar 

  32. Peacock, W. H., Seed, H. B. (1968) Sand liquefaction under cyclic loading simple shear conditions. J. Soil Mech. Found. Div., Proc. ASCE, 94, SM3, 689–708

    Google Scholar 

  33. Rice, J. R. (1976) The localization of plastic deformation. In: Theoretical and Applied Mechanics, Proc. 14th IUTAM Congress, W. T. Koiter (Ed.), North-Holland, Amsterdam, 207–220

    Google Scholar 

  34. Schaeffer, D. G. (1990) Instability and ill-posedness in the deformation of granular materials. Int. J. Num. Anal. Meth. Geomech., 14, 253–278

    Article  MathSciNet  MATH  Google Scholar 

  35. Seed, H. B., Lee, K. L. (1966) Liquefaction of saturated sands during cyclic loading. J. Soil Mech. Found. Div., Proc. ASCE, 92, SM6, 105–134

    Google Scholar 

  36. Seed, H. B., Martin, P. P., Lysmer, J. (1976) Pore-water pressure changes during soil liquefaction. J. Geot. Eng. Div., Proc. ASCE, 102, GT4, 323–346

    Google Scholar 

  37. Silver, M. L., Seed, H. B. (1971) Volume changes in sands during cyclic loading. J. Soil Mech. Found. Div., Proc. ASCE, 97, SM9, 1171–1182

    Google Scholar 

  38. von Wolffersdorff, P. A. (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-frictional Mater., 1 (3), 251–271

    Article  Google Scholar 

  39. Wu, W., Kolymbas, D. (2000) Hypoplasticity then and now. In: Constitutive modelling of granular materials, D. Kolymbas (Ed.), Springer, Berlin Heidelberg, 57–105

    Chapter  Google Scholar 

  40. Wu, W., Bauer, E., Kolymbas, D. (1996) Hypoplastic constitutive model with critical state for granular materials. Mech. Mater., 23, 45–69

    Article  Google Scholar 

  41. Youd, T. L. (1972) Compaction of sands by repeated shear straining. J. Soil Mech. Found. Div., Proc. ASCE, 98, SM7, 709–725

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Osinov, V.A., Gudehus, G. (2003). Dynamics of Hypoplastic Materials: Theory and Numerical Implementation. In: Hutter, K., Kirchner, N. (eds) Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations. Lecture Notes in Applied and Computational Mechanics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36565-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36565-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05650-5

  • Online ISBN: 978-3-540-36565-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics