Skip to main content

Efficient Satellite Based Geopotential Recovery

  • Conference paper
  • 1245 Accesses

Abstract

This contribution aims at directing the attention towards the main inverse problem of geodesy, i.e. the recovery of the geopotential. At present, geodesy is in the favorable situation that dedicated satellite missions for gravity field recovery are already operational, providing globally distributed and high-resolution datasets to perform this task. Due to the immense amount of data and the ever-growing interest in more detailed models of the Earth’s static and time-variable gravity field to meet the current requirements of geoscientific research, new fast and efficient solution algorithms for successful geopotential recovery are required.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austen, G., Baur, O., Keller, W.: Use of High Performance Computing in Gravity Field Research. In: Nagel, W.E., Jäger, W., Resch, M. (eds.): High Performance Computing in Science and Engineering’ 05. Springer, pp. 305–318 (2006)

    Google Scholar 

  2. Baur, O., Grafarend, E.W.: High-Performance, GOCE Gravity Field Recovery from Gravity Gradients Tensor Invariants and Kinematic Orbit Information. In: Flury, J., Rummel, R., Reigber, C., Rothacher, M., Boedecker, G., Schreiber, U. (eds.): Observation of the Earth System from Space. Springer Berlin Heidelberg New York, pp. 239–253 (2006)

    Chapter  Google Scholar 

  3. European Space Agency (ESA): Gravity Field and steady-state ocean circulation mission. ESA Publications Division, Reports for Mission Selection of the four candidate earth explorer missions, ESA SP-1233(1), ESTEC, Noordwjik (1999)

    Google Scholar 

  4. Jet Propulsion Laboratory (JPL): GRACE science and mission requirements document. 327-200, Rev. B, Jet Propulsion Laboratory, Pasadena, CA (1999)

    Google Scholar 

  5. Klees, R., Koop, R., Visser, P., van den IJssel, J.: Efficient gravity field recovery from GOCE gravity gradient observations. J. Geod., 74, 561–571 (2000)

    Article  MATH  Google Scholar 

  6. Koch, K.-R: Parameter estimation and hypothesis testing in linear models. Springer, 2nd Edition (1999)

    Google Scholar 

  7. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., Olson, T.R.: The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96. NASA Goddard Space Flight Center, Greenbelt, Maryland, USA (1998)

    Google Scholar 

  8. Müller, J.: Die Satellitengradiometermission GOCE. DGK, Series C, No. 541, Munich (2001)

    Google Scholar 

  9. Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM T. Math. Software, 8, pp. 43–71 (1982a)

    Article  MATH  Google Scholar 

  10. Paige, C.C., Saunders, M.A.: LSQR: Sparse linear equations and least squares problems. ACM T. Math. Software, 8, pp. 195–209 (1982b)

    Article  Google Scholar 

  11. Pail, R., Plank, G.: Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J. Geod., 76, pp. 462–474 (2002)

    Article  MATH  Google Scholar 

  12. Reubelt, T., Austen, G., Grafarend, E.W.: Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemeris of a Low Earth Orbiting GPS-tracked satellite. Case study: CHAMP. J. Geod., 77, pp. 257–278 (2003)

    MATH  Google Scholar 

  13. Rummel, R.: Satellite Gradiometry. In: Sünkel, H. (ed.): Mathematical and Numerical Techniques in Physical Geodesy. Lect. Notes Earth Sci., 7, Springer Berlin (1986)

    Google Scholar 

  14. Rummel, R., Sansò, F., van Gelderen, M., Brovelli, M., Koop, R., Miggliaccio, F., Schrama, E., Scerdote, F.: Spherical harmonic analysis of satellite gradiometry. Netherlands Geodetic Commission, New Series, 39 (1993)

    Google Scholar 

  15. Schuh, W.D.: Tailored Numerical Solution Strategies for the Global Determination of the Earth’s Gravity Field. Mitteilungen der Geodätischen Institute der TU Graz, 81, Graz (1996)

    Google Scholar 

  16. Sneeuw, N.: A semi-analytical approach to gravity field analysis from satellite observations. DGK, Series C, No. 527, Munich (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baur, O., Austen, G., Keller, W. (2007). Efficient Satellite Based Geopotential Recovery. In: Nagel, W.E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering ’06. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36183-1_36

Download citation

Publish with us

Policies and ethics