Skip to main content

Optimal Mesh for P 1 Interpolation in H 1 Seminorm

  • Conference paper
Proceedings of the 15th International Meshing Roundtable

Abstract

In this paper we present one approach to build optimal meshes for P 1 interpolation. Considering classical geometric error estimates based on the Hessian matrix of a solution, we show it is possible to generate optimal meshes in H 1 seminorm via a simple minimization procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 1. Alauzet F., Adaptation de maillage anisotrope en trois dimensions. Application aux simulations instationnaire en Mecanique des Fluides, PhD thesis, Universit des Sciences et Techniques du Languedoc, France, 2003.

    Google Scholar 

  2. 2. Borouchaki H. and Frey P.J., Adaptive triangular-quadrilateral mesh generation. Int J Numer Meth Engng 41:915–934, 1998.

    Article  MATH  Google Scholar 

  3. 3. Ciarlet P.G. Introduction à l'analyse numrique matricielle et à l'optimisation, Masson, Paris, 1982.

    Google Scholar 

  4. 4. Ciarlet P.G. Basic error estimates for elliptics problems. in Ciarlet P.G., Lions J.-L. (eds), Handbook of numerical analysis, vol II North Holland Amsterdam 1991.

    Google Scholar 

  5. 5. Cao W. On the error of linear interpolation and the orientation, aspect ratio, and internal angles of a triangles, SIAM J.Numer. Anal. Vol. 43, No 1, pp. 19–40.

    Google Scholar 

  6. 6. Dompierre J., Labb P., Guibault F., Controlling Approximation Error, Second M.I.T Conference on Computational Fluid and Solid Mechanics. Cambridge, Elsevier, p. 1929–1932, 2003.

    Google Scholar 

  7. 7. Fortin M. Estimation d'erreur a posteriori et adaptation de maillages, Revue europ é enne des é l é ments finis, 9(4), 2000

    Google Scholar 

  8. 8. Fortin M. Anisotropic mesh generation, é cole CEA-INRIA-EDF : A posteriori estimation and output bound computation, 2004.

    Google Scholar 

  9. 9. Frey P.J., Borouchaki H. Surface meshing using a geometric error estimator. Int J Numer Meth Engng 58(2):277–45, 2003.

    Article  Google Scholar 

  10. 10. Frey P.J. Georges P.-L. Mesh generation. Application to finite elements. Paris, Oxford: Hermes Sciences Publ., 2000.

    MATH  Google Scholar 

  11. 11. D'Azevedo E., Are Bilinear Quadrilaterals Better Than Linear Triangles? SIAM Journal on Scienti.c Computing Vol. 22, No 1, pp. 198–217.

    Google Scholar 

  12. 12. F.Hecht, K.Ohtsuka and 0.Pironneau. FreeFem++ manual Universite Pierre et Marie Curie, http://www.freefem.org/.++/index.htm

    Google Scholar 

  13. 13. F.Hecht. A few snags in mesh adaptation loops. In Proc. of 14th Int. Meshing Roundtable, San Diego, USA, 2005

    Google Scholar 

  14. 14. Manole C.-M., Vallet M.-G., Dompierre J. and Guibault F. Benchmarking Second Order Derivative Recovery of a Piecewise Linear Scalar Field, Proceedings of the 17th IMACS World congress Scientific Computation, Applied Mathematic and Simulation, 2005.

    Google Scholar 

  15. 15. S. Rippa, Minimal rougthness property of the Delaunay triangulation, Comput. Aided Geom Design, 7: pp. 489–497, 1990

    Article  MATH  Google Scholar 

  16. 16. Vassilevski Yu.V., Lipnikov K.N. Opimal Triangulations: Existence, Approximation, and double differentiation of P 1 Finite Element Functions. Comput. Math. Math. Phys. Vol 43, No 6, 2003, pp. 827–835.

    Google Scholar 

  17. 17. Zhang X. D., Accuracy concern for Hessian Metric, Internal note, CERCA, 2001.

    Google Scholar 

  18. 18. Zienkiewicz O.C, Zhu J.Z. The superconvergent patch recovery and a posteriori error estimates. Part I: the recovery technique. Int J Numer Meth Engng 33(7):1331–1364, 1992.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Lagüe, JF., Hecht, F. (2006). Optimal Mesh for P 1 Interpolation in H 1 Seminorm. In: Pébay, P.P. (eds) Proceedings of the 15th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34958-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34958-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34957-0

  • Online ISBN: 978-3-540-34958-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics