Skip to main content

Multiobjective Estimation of Distribution Algorithms

  • Chapter
Scalable Optimization via Probabilistic Modeling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 33))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley, D. H. (1987). An empirical study of bit vector function optimization. Genetic Algorithms and Simulated Annealing, pages 170-204

    Google Scholar 

  2. Ahn, C.-W. (2005). Theory, Design, and Application of Efficient Genetic and Evolutionary Algorithms. PhD thesis, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea

    Google Scholar 

  3. Ahn, C. W., Ramakrishna, R. S., and Goldberg, G. (2004). Real-coded Bayesian optimization algorithm: Bringing the strength of BOA into the continuous world. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004), pages 840-851

    Google Scholar 

  4. Bosman, P. A. N. and Thierens, D. (1999). Linkage information processing in distribution estimation algorithms. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), I:60-67

    Google Scholar 

  5. Chen, J.-H. (2004). Theory and applications of efficient multiobjective evolutionary algorithms. PhD thesis, Feng Chia University, Taichung, Taiwan

    Google Scholar 

  6. Coello Coello, C. A., Veldhuizen, D. A. V., and Lamont, G. B. (2001). Evolutionary algorithms for solving multiobjective problems. Kluwer

    Google Scholar 

  7. Deb, K. (2001). Multiobjective optimization using evolutionary algorithms. Wiley, Chichester, UK

    Google Scholar 

  8. Deb, K. and Goldberg, D. E. (1991). Analyzing deception in trap functions. IlliGAL Report No. 91009, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL

    Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2)

    Google Scholar 

  10. Goldberg, D. E. (2002). The design of innovation: Lessons from and for competent genetic algorithms, volume 7 of Genetic Algorithms and Evolutionary Computation. Kluwer

    Google Scholar 

  11. Goldberg, D. E., Deb, K., and Thierens, D. (1993). Toward a better understanding of mixing in genetic algorithms. Journal of the Society of Instrument and Control Engineers, 32(1):10-16

    Google Scholar 

  12. Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA. IlliGAL Report No. 99010, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL

    Google Scholar 

  13. Harik, G., Cantú-Paz, E., Goldberg, D. E., and Miller, B. L. (1999). The gambler’s ruin problem, genetic algorithms, and the sizing of populations. Evolutionary Computation, 7(3):231-253

    Article  Google Scholar 

  14. Harik, G. R. (1995). Finding multimodal solutions using restricted tournament selection. Proceedings of the International Conference on Genetic Algorithms (ICGA-95), pages 24-31

    Google Scholar 

  15. Harik, G. R. and Goldberg, D. E. (1996). Learning linkage. Foundations of Genetic Algorithms, 4:247-262

    Google Scholar 

  16. Khan, N. (2003). Bayesian optimization algorithms for multiobjective and hierarchically difficult problems. Master’s thesis, University of Illinois at Urbana-Champaign, Urbana, IL

    Google Scholar 

  17. Khan, N., Goldberg, D. E., and Pelikan, M. (2002). Multiobjective Bayesian optimization algorithm. IlliGAL Report No. 2002009, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL

    Google Scholar 

  18. Laumanns, M. and Ocenasek, J. (2002). Bayesian optimization algorithms for multi-objective optimization. Parallel Problem Solving from Nature, pages 298-307

    Google Scholar 

  19. MacQueen, J. B. (1967). Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the5th Symposium on Mathematics, Statistics and Probability, pages 281-297, Berkeley. University of California Press

    Google Scholar 

  20. Mahfoud, S. W. (1994). Population size and genetic drift in fitness sharing. Foundations of Genetic Algorithms, 3:185-224. (Also IlliGAL Report No. 94005)

    Google Scholar 

  21. Mühlenbein, H. and Paaß, G. (1996). From recombination of genes to the estimation of distributions I. Binary parameters. Parallel Problem Solving from Nature, pages 178-187

    Google Scholar 

  22. Mühlenbein, H. and Schlierkamp-Voosen, D. (1993). Predictive models for the breeder genetic algorithm: I. Continuous parameter optimization. Evolutionary Computation, 1(1):25-49

    Article  Google Scholar 

  23. Ocenasek, J. and Schwarz, J. (2002). Estimation of distribution algorithm for mixed continuous-discrete optimization problems. In 2nd Euro-International Symposium on Computational Intelligence, pages 227-232

    Google Scholar 

  24. Pelikan, M. (2005). Hierarchical Bayesian optimization algorithm: Toward a new generation of evolutionary algorithms. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  25. Pelikan, M. and Goldberg, D. E. (2001). Escaping hierarchical traps with competent genetic algorithms. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 511-518

    Google Scholar 

  26. Pelikan, M. and Goldberg, D. E. (2003). A hierarchy machine: Learning to optimize from nature and humans. Complexity, 8(5):36-45

    Article  Google Scholar 

  27. Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. (1999). BOA: The Bayesian optimization algorithm. Proceedings of the Genetic and Evo-lutionary Computation Conference (GECCO-99), I:525-532

    Google Scholar 

  28. Pelikan, M. and Mühlenbein, H. (1999). The bivariate marginal distrib-ution algorithm. Advances in Soft Computing—Engineering Design and Manufacturing, pages 521-535

    Google Scholar 

  29. Pelikan, M., Sastry, K., and Goldberg, D. E. (2002). Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reasoning, 31(3):221-258

    Article  MATH  MathSciNet  Google Scholar 

  30. Pelikan, M., Sastry, K., and Goldberg, D. E. (2005). Multiobjective hBOA, clustering, and scalability. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2005), pages 663-670

    Google Scholar 

  31. Reed, P. (2002). Striking the balance: Long-term groundwater monitoring design for multiple conflicting objectives. PhD thesis, University of Illinois, Urbana, IL

    Google Scholar 

  32. Sastry, K. and Goldberg, D. E. (2004). Designing competent mutation operators via probabilistic model building of neighborhoods. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2004), pages 114-125

    Google Scholar 

  33. Sastry, K., Pelikan, M., and Goldberg, D. E. (2005). Limits of scalability of multiobjective estimation of distribution algorithms. Proceedings of the Congress on Evolutionary Computation, pages 217-2224

    Google Scholar 

  34. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6:461-464

    Article  MATH  MathSciNet  Google Scholar 

  35. Thierens, D. (1995). Analysis and design of genetic algorithms. PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium

    Google Scholar 

  36. Thierens, D. (1999). Scalability problems of simple genetic algorithms. Evolutionary Computation, 7(4):331-352

    Article  Google Scholar 

  37. Thierens, D. and Bosman, P. A. N. (2001). Multi-objective mixture-based iterated density estimation evolutionary algorithms. Morgan Kaufmann, pages 663-670

    Google Scholar 

  38. Thierens, D. and Goldberg, D. (1994). Convergence models of genetic algorithm selection schemes. Parallel Problem Solving from Nature, pages 116-121

    Google Scholar 

  39. Thierens, D. and Goldberg, D. E. (1993). Mixing in genetic algorithms. Proceedings of the International Conference on Genetic Algorithms (ICGA-93), pages 38-45

    Google Scholar 

  40. Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report 103, Swiss Federal Institute of Technology (ETH) Zürich

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pelikan, M., Sastry, K., Goldberg, D.E. (2006). Multiobjective Estimation of Distribution Algorithms. In: Pelikan, M., Sastry, K., CantúPaz, E. (eds) Scalable Optimization via Probabilistic Modeling. Studies in Computational Intelligence, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34954-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34954-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34953-2

  • Online ISBN: 978-3-540-34954-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics