Skip to main content

Approaches to Measuring Inconsistent Information

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3300))

Abstract

Measures of quantity of information have been studied extensively for more than fifty years. The seminal work on information theory is by Shannon [67]. This work, based on probability theory, can be used in a logical setting when the worlds are the possible events. This work is also the basis of Lozinskii’s work [48] for defining the quantity of information of a formula (or knowledgebase) in propositional logic. But this definition is not suitable when the knowledgebase is inconsistent. In this case, it has no classical model, so we have no “event” to count. This is a shortcoming since in practical applications (e.g. databases) it often happens that the knowledgebase is not consistent. And it is definitely not true that all inconsistent knowledgebases contain the same (null) amount of information, as given by the “classical information theory”. As explored for several years in the paraconsistent logic community, two inconsistent knowledgebases can lead to very different conclusions, showing that they do not convey the same information. There has been some recent interest in this issue, with some interesting proposals. Though a general approach for information theory in (possibly inconsistent) logical knowledgebases is missing. Another related measure is the measure of contradiction. It is usual in classical logic to use a binary measure of contradiction: a knowledgebase is either consistent or inconsistent. This dichotomy is obvious when the only deductive tool is classical inference, since inconsistent knowledgebases are of no use. But there are now a number of logics developed to draw non-trivial conclusions from an inconsistent knowledgebase. So this dichotomy is not sufficient to describe the amount of contradiction of a knowledgebase, one needs more fine-grained measures. Some interesting proposals have been made for this. The main aim of this paper is to review the measures of information and contradiction, and to study some potential practical applications. This has significant potential in developing intelligent systems that can be tolerant to inconsistencies when reasoning with real-world knowledge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amgoud, L., Parsons, S., Maudet, N.: Arguments, dialogue, and negotiation. In: Proceedings of the 14th European Conference on Artificial Intelligence, ECAI 2000 (2000)

    Google Scholar 

  3. Arrow, K.J.: Social choice and individual values, 2nd edn. Wiley, New York (1963)

    MATH  Google Scholar 

  4. Baral, C., Kraus, S., Minker, J., Subrahmanian, V.S.: Combining knowledge bases consisting of first-order theories. Computational Intelligence 8(1), 45–71 (1992)

    Article  Google Scholar 

  5. Baral, C., Kraus, S., Minker, J.: Combining multiple knowledge bases. IEEE Transactions on Knowledge and Data Engineering 3(2), 208–220 (1991)

    Article  Google Scholar 

  6. Belnap, N.: A useful four-valued logic. In: Epstein, G. (ed.) Modern Uses of Multiple-valued Logic, pp. 8–37. Reidel, Dordrecht (1977)

    Google Scholar 

  7. Benferhat, S., Dubois, D., Prade, H.: Argumentative inference in uncertain and inconsistent knowledge bases. In: Proceedings of Uncertainty in Artificial Intelligence, pp. 1445–1449. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  8. Benferhat, S., Dubois, D., Prade, H.: An overview of inconsistency-tolerant inferences in prioritized knowledge bases. In: Fuzzy Sets, Logic and Reasoning about Knowledge. Applied Logic Series, vol. 15, pp. 395–417. Kluwer, Dordrecht (1999)

    Chapter  Google Scholar 

  9. Besnard, P., Hunter, A.: Quasi-classical logic: Non-trivializable classical reasoning from inconsistent information. In: Froidevaux, C., Kohlas, J. (eds.) ECSQARU 1995. LNCS, vol. 946, pp. 44–51. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  10. Besnard, P., Hunter, A.: Introduction to actual and potential contradictions. In: Besnard, P., Hunter, A. (eds.), Gabbay, D., Smets, P. (series eds.) Handbook of Defeasible Resoning and Uncertainty Management Systems, vol. 2, pp. 1–9. Kluwer, Dordrecht (1998)

    Google Scholar 

  11. Brewka, G.: Preferred subtheories: An extended logical framework for default reasoning. In: Proceedings of the Eleventh International Conference on Artificial Intelligence, pp. 1043–1048 (1989)

    Google Scholar 

  12. Cholvy, L., Garion, C.: Querying Several Conflicting Databases. Journal of Applied Non-Classical Logics 14(3), 295–327 (2004)

    Article  MATH  Google Scholar 

  13. Carnielli, W., Marcos, J.: A taxonomy of C systems. In: Paraconsistency: The Logical Way to the Inconsistent, pp. 1–94. Marcel Decker, New York (2002)

    Chapter  Google Scholar 

  14. Chesnevar, C., Maguitman, A., Loui, R.: Logical models of argument. ACM Computing Surveys 32, 337–383 (2001)

    Article  Google Scholar 

  15. Dalal, M.: Investigations into a theory of knowledge base revision: Preliminary report. In: Proceedings of the 7th National Conference on Artificial Intelligence (AAAI 1988), pp. 3–7. MIT Press, Cambridge (1988)

    Google Scholar 

  16. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelligence 89, 1–29 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. da Costa, N.C.: On the theory of inconsistent formal systems. Notre Dame Journal of Formal Logic 15, 497–510 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dubois, D., Konieczny, S., Prade, H.: Quasi-possibilistic logic and its measures of information and conflict. Fundamenta Informaticae 57, 101–125 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 439–513. Oxford University Press, Oxford (1994)

    Google Scholar 

  20. Dubois, D., Prade, H.: Properties of measures of information in evidence and possibility theories. Fuzzy Sets and Systems 24, 161–182 (1987); Reprinted in Fuzzy Sets and Systems, supplement 100, 35–49 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Elvang-Goransson, M., Hunter, A.: Argumentative logics: Reasoning from classically inconsistent information. Data and Knowledge Engineering 16, 125–145 (1995)

    Article  MATH  Google Scholar 

  22. Friedman, N., Halpern, J.Y.: Belief revision: a critique. In: Proceedings of the Fifth International Conference on Principles of Knowledge Representation and Reasoning (KR 1996), pp. 421–431 (1996)

    Google Scholar 

  23. Gabbay, D., Hunter, A.: Making inconsistency respectable 1: A logical framework for inconsistency in reasoning. In: Jorrand, P., Kelemen, J. (eds.) FAIR 1991. LNCS, vol. 535, pp. 19–32. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  24. Gärdenfors, P.: Knowledge in Flux. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  25. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. Technical report, UCL Department of Computer Science (2004)

    Google Scholar 

  26. Grant, J.: Classifications for inconsistent theories. Notre Dame Journal of Formal Logic 19, 435–444 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hintikka, J.: On semantic information. Information and Inference, 3–27 (1970)

    Google Scholar 

  28. Hunter, A.: Paraconsistent logics. In: Gabbay, D., Smets, P. (eds.) Handbook of Defeasible Resoning and Uncertainty Management Systems, vol. 2, pp. 11–36. Kluwer, Dordrecht (1998)

    Google Scholar 

  29. Hunter, A.: Reasoning with contradictory information using quasi-classical logic. Journal of Logic and Computation 10, 677–703 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hunter, A.: A semantic tableau version of first-order quasi-classical logic. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 544–556. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  31. Hunter, A.: Measuring inconsistency in knowledge via quasi-classical models. In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI 2002), pp. 68–73. MIT Press, Cambridge (2002)

    Google Scholar 

  32. Hunter, A.: Evaluating the significance of inconsistency. In: Proceedings of the International Joint Conference on AI (IJCAI 2003), pp. 468–473 (2003)

    Google Scholar 

  33. Hunter, A.: Measuring inconsistency in first-order knowledge. Technical report, UCL Department of Computer Science (2003)

    Google Scholar 

  34. Hunter, A.: Logical comparison of inconsistent perspectives using scoring functions. Knowledge and Information Systems Journal (2004) (in press)

    Google Scholar 

  35. Kemeny, J.: A logical measure function. Journal of Symbolic Logic 18, 289–308 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  36. De Kleer, J., Williams, B.: Diagnosing multiple faults. Artificial Intelligence 32, 97–130 (1987)

    Article  MATH  Google Scholar 

  37. Knight, K.M.: Measuring inconsistency. Journal of Philosophical Logic 31, 77–98 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Knight, K.M.: A theory of inconsistency. PhD thesis, The university of Manchester (2002)

    Google Scholar 

  39. Knight, K.M.: Two information measures for inconsistent sets. Journal of Logic, Language and Information 12, 227–248 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Konieczny, S., Lang, J., Marquis, P.: Quantifying information and contradiction in propositional logic through epistemic tests. In: Proceedings of the 18th International Joint Conference on Artificial Intellignce (IJCAI 2003), pp. 106–111 (2003)

    Google Scholar 

  41. Konieczny, S., Pino-Pérez, R.: On the logic of merging. In: Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 488–498. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  42. Konieczny, S., Pino-Pérez, R.: Merging information under constraints: a qualitative framework. Journal of Logic and Computation 12(5), 773–808 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kuipers, T. (ed.): What is closer-to-the-truth? Rodopi, Amsterdam (1987)

    Google Scholar 

  45. Kwok, R., Foo, N., Nayak, A.: Coherence of laws. In: Proceedings of the International Joint Conference on AI (IJCAI 2003) (2003)

    Google Scholar 

  46. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55, 1–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Levesque, H.: A logic of implicit and explicit belief. In: Proceedings of the National Conference on Artificial Intelligence (AAAI 1984), pp. 198–202 (1984)

    Google Scholar 

  48. Lozinskii, E.: Information and evidence in logic systems. Journal of Experimental and Theoretical Artificial Intelligence 6, 163–193 (1994)

    Article  MATH  Google Scholar 

  49. Lozinskii, E.: Resolving contradictions: A plausible semantics for inconsistent systems. Journal of Automated Reasoning 12, 1–31 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lozinskii, E.: On knowledge evolution: Acquisition, revision, contraction. Journal of Applied Non-Classical Logic 7, 177–212 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Makinson, D.: General Pattern in nonmonotonic reasoning. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. III, pp. 35–110. Clarendon Press, Oxford (1994)

    Google Scholar 

  52. Manor, R., Rescher, N.: On inferences from inconsistent information. Theory and Decision 1, 179–219 (1970)

    Article  MATH  Google Scholar 

  53. Marquis, P., Porquet, N.: Computational aspects of quasi-classical entailment. Journal of Applied Non-classical Logics 11, 295–312 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  55. Paris, J.B.: The uncertain reasoner’s companion: a mathematical perspective. Cambridge Tracts in Theoretical Computer Science, vol. 39. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  56. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some formal inter-agent dialogues. Journal of Logic and Computation (2003)

    Google Scholar 

  57. Popper, K.: Conjectures and Refutation. Routlege and Kegan Paul, London (1963)

    Google Scholar 

  58. Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation. In: Gabbay, D. (ed.) Handbook of Philosophical Logic. Kluwer, Dordrecht (2000)

    Google Scholar 

  59. Priest, G.: Minimally inconsistent LP. Studia Logica 50, 321–331 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  60. Priest, G.: Paraconsistent logic. In: Handbook of Philosophical Logic, vol. 6. Kluwer, Dordrecht (2002)

    Google Scholar 

  61. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32, 57–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  62. Revesz, P.: On the semantics of arbitration. International Journal of Algebra and Computation 7, 133–160 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  63. Ryan, M., Schobbens, P.Y.: Belief revision and verisimilitude. Notre Dame Journal of Formal Logic 36(1), 15–29 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  64. Savage, L.J.: The foundations of statistics, 2nd revised edn. Dover Publications, New York (1971)

    MATH  Google Scholar 

  65. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artificial Intelligence 74, 249–310 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  66. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  67. Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  68. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, vol. 2, pp. 105–134. Princeton University Press, Princeton (1987)

    Google Scholar 

  69. Williams, M.: Iterated theory base change: A computational model. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 1541–1547 (1995)

    Google Scholar 

  70. Wong, P., Besnard, P.: Paraconsistent reasoning as an analytic tool. Journal of the Interest Group in Propositional Logic 9, 233–246 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunter, A., Konieczny, S. (2005). Approaches to Measuring Inconsistent Information. In: Bertossi, L., Hunter, A., Schaub, T. (eds) Inconsistency Tolerance. Lecture Notes in Computer Science, vol 3300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30597-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30597-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24260-4

  • Online ISBN: 978-3-540-30597-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics