Skip to main content

Integral Trees: Subtree Depth and Diameter

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3322))

Abstract

Regions in an image graph can be described by their spanning tree. A graph pyramid is a stack of image graphs at different granularities. Integral features capture important properties of these regions and the associated trees. We compute the depth of a rooted tree, its diameter and the center which becomes the root in the top-down decomposition of a region. The integral tree is an intermediate representation labeling each vertex of the tree with the integral feature(s) of the subtree. Parallel algorithms efficiently compute the integral trees for subtree depth and diameter enabling local decisions with global validity in subsequent top-down processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Viola, P., Jones, M.: Robust Real-time Face Detection. International Journal of Computer Vision 57, 137–154 (2004)

    Article  Google Scholar 

  2. Beleznai, C., Frühstück, B., Bischof, H., Kropatsch, W.G.: Detecting Humans in Groups using a Fast Mean Shift Procedure. OCG-Schriftenreihe 179, 71–78 (2004)

    Google Scholar 

  3. Kropatsch, W.G.: Building Irregular Pyramids by Dual Graph Contraction. IEE-Proc. Vision, Image and Signal Processing 142, 366–374 (1995)

    Article  Google Scholar 

  4. Christofides, N.: The Traveling Salesman Problem. John Wiley and Sons, Chichester (1985)

    Google Scholar 

  5. Graham, S.M., Joshi, A., Pizlo, Z.: The Travelling Salesman Problem: A Hierarchical Model. Memory & Cognition 28, 1191–1204 (2000)

    Article  Google Scholar 

  6. Pizlo, Z., Li, Z.: Graph Pyramids as Models of Human Problem Solving. In: Proc. of SPIE-IS&T Electronic Imaging, Computational Imaging, vol. 5299, pp. 205–215 (2004)

    Google Scholar 

  7. Humphrey, G.: Directed Thinking. Dodd, Mead (1948)

    Google Scholar 

  8. Pizlo, Z.: Perception Viewed as an Inverse Problem. Vis. Res. 41, 3145–3161 (2001)

    Article  Google Scholar 

  9. Pizlo, Z., Rosenfeld, A., Epelboim, J.: An Exponential Pyramid Model of the Time-course of Size Processing. Vision Research 35, 1089–1107 (1995)

    Article  Google Scholar 

  10. Koffka, K.: Principles of Gestalt Psychology. Harcourt, New York (1935)

    Google Scholar 

  11. Borgefors, G.: Distance Transformation in Arbitrary Dimensions. Computer Vision, Graphics, and Image Processing 27, 321–345 (1984)

    Article  Google Scholar 

  12. Borgefors, G.: Distance Transformation in Digital Images. Computer Vision, Graphics, and Image Processing 34, 344–371 (1986)

    Article  Google Scholar 

  13. Kropatsch, W.G.: Equivalent Contraction Kernels to Build Dual Irregular Pyramids. Advances in Computer Vision, pp. 99–107. Springer, Heidelberg (1997)

    Google Scholar 

  14. Kropatsch, W.G., Saib, M., Schreyer, M.: The Optimal Height of a Graph Pyramid. OCG-Schriftenreihe 160, 87–94 (2002)

    Google Scholar 

  15. Kropatsch, W.G., Haxhimusa, Y., Pizlo, Z.: Integral Trees: Subtree Depth and Diameter. Technical Report No. 92, PRIP, Vienna University of Technology (2004)

    Google Scholar 

  16. Bister, M., Cornelis, J., Rosenfeld, A.: A Critical View of Pyramid Segmentation Algorithms. Pattern Recognition Letters 11, 605–617 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kropatsch, W.G., Haxhimusa, Y., Pizlo, Z. (2004). Integral Trees: Subtree Depth and Diameter. In: Klette, R., Žunić, J. (eds) Combinatorial Image Analysis. IWCIA 2004. Lecture Notes in Computer Science, vol 3322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30503-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30503-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23942-0

  • Online ISBN: 978-3-540-30503-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics