Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3292))

  • 660 Accesses

Abstract

Grid resource selection requires matching job requirements to available resources. This is a difficult problem when the number of attributes for each resource is large. We present an algorithm that uses the Singular Value Decomposition to encode each resource’s properties by a single value. Jobs are matched by using the same encoding to produce a value that can be rapidly compared to those of the resources. We show that reasonable matches can be found in time O(m log n) where n is the number of resources and m the number of attributes for which a job might have requirements. This is in contrast to “approximate nearest neighbor” techniques which require either time or storage exponential in m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1993)

    Google Scholar 

  2. Fayyad, U.M., Piatetsky_Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. AAAI Press/Mit Press (1996)

    Google Scholar 

  3. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inform. Theory 13, 57–67 (1967)

    Article  Google Scholar 

  4. Cost, S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10, 57–78 (1993)

    Google Scholar 

  5. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic, Boston (1991)

    Google Scholar 

  6. Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: The QBIC system. IEEE Computer 28, 23–32 (1995)

    Google Scholar 

  7. Deerwester, S., Dumals, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Inform. Science 41(6), 391–407 (1990)

    Article  Google Scholar 

  8. Devroye, L., Wagner, T.J.: Nearest neighbor methods in discrimination. In: Krishnaiah, P.R., Kanal, L.N. (eds.) Handbook of Statistics, vol. 2, North-Holland, Amsterdam (1982)

    Google Scholar 

  9. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Berlin (1997)

    MATH  Google Scholar 

  10. Dobkin, D., Lipton, R.: Multidimensional search problems. SIAM J. Computing 5, 181–186 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. Clarkson, K.: A randomized algorithm for closest-point queries. SIAM J. Computing 17, 830–847 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Agarwal, P.K., Matousek, J.: Ray shooting and parametric search. In: Proc. 24th ACM Symp. On Theory of Computing, pp. 517–526 (1992)

    Google Scholar 

  13. Yao, C., Yao, F.F.: A general approach to d-dimensional geometric queries. In: Proc. 17th Annu. Sympos. Theory Comput., pp. 163–168 (1985)

    Google Scholar 

  14. Matousek, J.: Reporting points in half-spaces. In: Proc. 32nd IEEE Sympos. on Foundations of Computer Science (1991)

    Google Scholar 

  15. Bentley, J.L., Weide, B.W., Yao, A.C.: Optimal expected-time algorithms for closest point problems. ACM Trans. on Mathematical Software 6(4), 563–580 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. on Mathematical Software 3, 209–226 (1977)

    Article  MATH  Google Scholar 

  17. Sproull, R.F.: Refinements to nearest-neighbor searching in k dimensional trees. Algorithmica 6, 579–589 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Arya, S., Mount, D.M., Narayan, O.: Accounting for boundary effects in nearest neighbor searching. In: Proc. 11th Annu. ACM Sympos. Comput. Geom., pp. 336–344 (1995)

    Google Scholar 

  19. Meiser, S.: Point location in arrangements of hyperplanes. Information and Computation 106, 286–303 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of the ACM 45(6), 891–923 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Clarkson, K.L.: An algorithm for approximate closest-point queries. In: Proc. 10th Annu. ACM Sympos. Comput. Geom., pp. 160–164 (1994)

    Google Scholar 

  22. Kleinberg, J.: Two algorithms for nearest-neighbor search in high dimensions. In: Proc. 29th ACM Sympos. on Theory of Computing (1997)

    Google Scholar 

  23. Globus: A U.S. multi-institutional research effort that seeks to enable the construction of computational grids, Homepage (October 2003), http://www.globus.org/

  24. Foster, I., Kesselman, C., Lee, C., Lindell, B., Nahrstedt, K., Roy, A.: A distributed resource management architecture that supports advanced reservation and co-allocation. In: International Workshop on Quality of Service (1999)

    Google Scholar 

  25. Berry, M.W., Fierro, R.D.: Low-rank orthogonal decompositions for information retrieval applications. Numerical Linear Algebra with Applications 3(4), 301–328 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roumani, A.M., Skillicorn, D.B. (2004). Large-Scale Resource Selection in Grids. In: Meersman, R., Tari, Z., Corsaro, A. (eds) On the Move to Meaningful Internet Systems 2004: OTM 2004 Workshops. OTM 2004. Lecture Notes in Computer Science, vol 3292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30470-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30470-8_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23664-1

  • Online ISBN: 978-3-540-30470-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics