Skip to main content

The Multi-multiway Cut Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3111))

Abstract

In this paper, we define and study a natural generalization of the multicut and multiway cut problems: the minimum multi-multiway cut problem. The input to the problem is a weighted undirected graph G=(V,E) and k sets S 1,S 2,...,S k of vertices. The goal is to find a subset of edges of minimum total weight whose removal completely disconnects each one of the sets S 1,S 2,...,S k , i.e., disconnects every pair of vertices u and v such that u,vS i , for some i. This problem generalizes both the multicut problem, when |S i |=2, for 1≤ ik, and the multiway cut problem, when k=1.

We present an approximation algorithm for the multi-multiway cut problem with an approximation ratio which matches that obtained by Garg, Vazirani, and Yannakakis [GVY96] on the standard multicut problem. Namely, our algorithm has an O(log 2k) approximation ratio. Moreover, we consider instances of the minimum multi-multiway cut problem which are known to have an optimal solution of light weight. We show that our algorithm has an approximation ratio substantially better than O(log 2k) when restricted to such “light” instances. Specifically, we obtain an O(log LP)-approximation algorithm for the problem, when all edge weights are at least 1, where LP is the value of a natural LP-relaxation of the problem. The latter improves the O(log LP loglog LP) approximation ratio for the minimum multicut problem (implied by the work of Seymour [Sey95] and Even et al. [ENSS98].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chrikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (2003)

    Google Scholar 

  2. Calinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for multiway cut. In: Proceedings of the 30th Ann. ACM Symp. on Theory of Comp., ACM-SIAM (1998)

    Google Scholar 

  3. Cheriyan, J., Karloff, H.J., Rabani, Y.: Approximating directed multicuts. In: Proceedings of IEEE Symposium on Foundations of Computer Science (2001)

    Google Scholar 

  4. Cunningham, W.H., Tang, L.: Optimal 3-terminal cuts and linear programming. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 114–125. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Demaine, E.D., Immorlica, N.: Correlation clustering with partial information. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 1–13. Springer, Heidelberg (2003)

    Google Scholar 

  6. Dahlhaus, R., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal on Computing 23, 864–894 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Downey, R.: Parameterized complexity for the skeptic. In: Proceedings of 18th IEEE Conference on Computational Complexity (2003)

    Google Scholar 

  8. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal of Mathematics 8, 399–404 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feige, U., Goemans, M.X.: Approximating the value of two prover proof systems with applications to Max-2-Sat and Max-Dicut. In: Proceedings of the 3rd Israel Symposium on Theory of Computing and Systems, pp. 182–189 (1995)

    Google Scholar 

  11. Gupta, A.: Improved results for directed multicut. In: Proceedings 14th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 454–455. ACM-SIAM (2003)

    Google Scholar 

  12. Garg, N., Vazirani, V., Yannakakis, M.: Approximate max-flow min- (multi)cut theorems and their applications. SIAM Journal on Computing 25(2), 235–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karger, D.R., Klein, P., Stein, C., Thorup, M., Young, N.E.: Rounding algorithms for a geometric embedding of minimum multiway cut. In: Proceedings of ACM Symposium on the Theory of Computing, pp. 668–678 (1999)

    Google Scholar 

  15. Klein, P.N., Plotkin, S.A., Rao, S., Tardos, S.E.: New network decompositions theorems with applications. Brown University Technical Report CS-93-30 (1993)

    Google Scholar 

  16. Klein, P., Rao, S., Agrawal, A., Ravi, R.: An approximate max-flow min-cut relation for undirected multicommodity flow, with applications. Combinatorica 15, 187–202 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8, 261–277 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM 46(6), 787–832 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. Journal of Algorithms 31, 355–354 (1999)

    Google Scholar 

  20. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shmoys, D.: Cut problems and their applications to divide-and-conquer. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 192–235. PWS Publishing (1996)

    Google Scholar 

  23. Yannakakis, M., Kanellakis, P.C., Cosmadakis, S.C., Papadimitriou, C.H.: Cutting and partitioning a graph after a fixed pattern. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 712–722. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avidor, A., Langberg, M. (2004). The Multi-multiway Cut Problem. In: Hagerup, T., Katajainen, J. (eds) Algorithm Theory - SWAT 2004. SWAT 2004. Lecture Notes in Computer Science, vol 3111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27810-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27810-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22339-9

  • Online ISBN: 978-3-540-27810-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics